The exposure of electrospray droplets to acid vapors can significantly affect protein charge state distributions (CSDs) derived from unbuffered solutions. Such experiments have been conducted by leaking acidic vapors into the counter-current nitrogen drying gas of an electrospray interface. On the basis of changes in protein CSDs, protein folding and unfolding phenomena are implicated in these studies. Additionally, noncovalently bound complexes are preserved, and transient intermediates are observed, such as high charge state ions of holomyoglobin. CSDs of proteins containing disulfide bonds shift slightly, if at all, with acid vapor leak-in, but when these disulfide bonds are reduced in solution, charge states higher than the number of basic sites (Lys, Arg, His, and N-terminus) are observed. Since there is no observed change in the CSD of buffered proteins exposed to acidic vapors, this novel multiple charging phenomenon is attributed to a pH effect. Thus, this acid vapor leak-in approach can be used to reverse "wrong-way-round" nanoelectrospray conditions by altering solution pH in the charged droplets relative to the pH in bulk solution. In general, the exposure of electrospray droplets to acidic vapors provides means for altering protein CSDs independent of bulk unbuffered solution pH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940272 | PMC |
http://dx.doi.org/10.1021/ac101578q | DOI Listing |
Rev Sci Instrum
January 2025
State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
In this paper, we present the development of a nanosecond pulse generator utilizing semiconductor opening switches (SOS), designed to deliver high voltage and operate at a high repetitive frequency. The pulse generator comprises three main components: a primary charging unit, a magnetic pulse compression unit, and an SOS magnification unit. To ensure stable operation of the high-power charging unit at high repetitive frequencies, a rectifying resonant charging and energy recovery circuit are implemented, providing a 1 kV charging voltage at a 3 kHz repetition rate.
View Article and Find Full Text PDFLangmuir
January 2025
Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States.
The self-assembly of phenylalanine (F)-based peptides is a critical area of research with potential implications for the development of advanced biomaterials and technologies. Previous studies indicate that homo-oligopeptides with F-X residues (X = 1 to 6) can self-assemble into diverse nano-microstructures, but the role of oligopeptide chain length on this process remains unclear. This review investigates the role of F-X chain length on self-assembly processes and morphologies, considering the effect of incubation conditions and the capping group at the N and/or C terminals.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun, 130022, China.
Ternary solar cells have been rapidly developed in the realm of organic solar cells (OSCs). The incorporation of a third component into a cell results in a complicated active layer morphology, and the relation of this morphology to power conversion efficiency remains elusive. In this work, two ternary active layers, B1:Y7 (10 wt%):BO-4Cl and B1:Y7 (50 wt%):BO-4Cl are constructed, and the reasons for the differences in PCE caused by varying the Y7 content are investigated using theoretical calculations.
View Article and Find Full Text PDFNanoscale
January 2025
J. Heyrovský Institute of Physical Chemistry, Czech Acad. Sci., Dolejškova 3, CZ-18200, Prague 8, Czech Republic.
Compositionally complex doping of spinel oxides toward high-entropy oxides is expected to enhance their electrochemical performance substantially. We successfully prepared high-entropy compounds, the oxide (ZnMgCoCu)FeO (HEOFe), lithiated oxyfluoride Li(ZnMgCoCu)FeOF (LiHEOFeF), and lithiated oxychloride Li(ZnMgCoCu)FeOCl (LiHEOFeCl) with a spinel-based cubic structure by ball milling and subsequent heat treatment. The products exhibit particles with sizes from 50 to 200 nm with a homogeneous atomic distribution.
View Article and Find Full Text PDFNanoscale
January 2025
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
An all-vanadium-based lithium-ion full battery is successfully assembled with hierarchical micro-nano yolk-shell structures VO and VO as the cathode and anode, which were obtained through a facile solvothermal method with heat treatment under different atmospheres. When used as the cathode of the lithium-ion battery, the hierarchical micro-nano yolk-shell VO demonstrated higher capacities than bulk VO, commercial LiFePO, and LiNiCoMnO cathodes at various current densities. The all-vanadium-based lithium-ion full battery shows good cycle performance at 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!