Rats receiving fluoride during the whole pregnancy up to the 9th day of lactation showed, when isolated at 10th day of life, a reduced rate of ultrasonic vocalizations (UV) in male pups (NaF 5.0 mg) and, in 90th days male rats, an increase of the Pre-Pulse Inhibition (PPI) with a reduction of the Peak response to the Startle stimulus given alone. Newborn rat reactivity could represent a useful and validated model in anxiety studies which could be moored with the Acoustic Startle Reflex (ASR) and PPI, appropriate models to study, in adulthood, particular neurological and psychiatric disorders showing deficits in attention and sensory-motor gating (Tourettes' syndrome, obsessive compulsive disorders, Huntington's disease and schizophrenia).
Download full-text PDF |
Source |
---|
J Exp Biol
January 2025
Dartmouth College, Ecology, Evolution, Environment & Society Graduate Program, Hanover NH, USA.
Many animals communicate using call and response signals, but the evolutionary origins of this type of communication are largely unknown. In most cricket species, males sing and females walk or fly to calling males. In the tribe Lebinthini, however, males produce calls that trigger a vibrational reply from females, and males use the substrate vibrations to find the responding female.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
ENT Institute and Department of Otolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, 200031, China.
Tinnitus, a widespread condition affecting numerous individuals worldwide, remains a significant challenge due to limited effective therapeutic interventions. Intriguingly, patients using cochlear implants (CIs) have reported significant relief from tinnitus symptoms, although the underlying mechanisms remain unclear and intracochlear implantation risks cochlear damage and hearing loss. This study demonstrates that targeted intracochlear electrical stimulation (ES) in guinea pigs with noise-induced hearing loss reversed tinnitus-related maladaptive plasticity in the cochlear nucleus (CN), characterized by reduced auditory innervation, increased somatosensory innervation, and diminished inhibitory neural networks.
View Article and Find Full Text PDFToxics
November 2024
National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
Thyroid hormones (THs) require iodine for biosynthesis and play critical roles in brain development. Perchlorate is an environmental contaminant that reduces serum THs by blocking the uptake of iodine from the blood to the thyroid gland. Using a pregnant rodent model, we examined the impact of maternal exposure to perchlorate under conditions of dietary iodine deficiency (ID) on the brain and behavior of offspring.
View Article and Find Full Text PDFBrain Behav
January 2025
INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain.
Purpose: Metabolic dysfunction-associated steatohepatitis (MASH) is a prevalent disease caused by high fat and high cholesterol intake, which leads to systemic deterioration. The aim of this research is to conduct a psychobiological exploration of MASH in adult male rats.
Methods: Subjects who were administered a high-fat and high-cholesterol diet for 14 weeks.
Neuroscience
February 2025
School of Psychological and Cognitive Sciences, Peking University, Beijing 100080, China.
Prepulse inhibition (PPI) refers to the phenomenon in which a weak sensory stimulus before a strong one significantly reduces the startle reflex caused by the strong stimulus. Perceptual spatial separation, a phenomenon where auditory cues from the prepulse and background noise are distinguished in space, has been shown to enhance PPI. This study aims to investigate the neural modulation mechanisms of PPI by the spatial separation between the prepulse stimulus and background noise, particularly in the deep superior colliculus (deepSC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!