The calculation of transfer of radionuclides from the abiotic to the biotic environment is a well-established practice in radiological assessments. Concentration ratios provide simple means to estimate radionuclide activity in biota, from measured (or estimated) radionuclide concentrations in either a food source or an abiotic component such as soil or water. They are typically reported by element, and data compilations may include information such as soil type (e.g., sand, loam, clay) and species. The data may be for multiple species at a single location, single species at multiple locations, or represent compilations from multiple sources. Recently published guidance suggests that estimates are best made using data from the same ecosystem. This paper examines this recent guidance, in the context of using measured data from within a single ecosystem and comparing results to more generic values. Results suggest that generic values may be an adequate substitute for site-specific information. It illustrates how ionic potential may be used as an alternative to group chemical properties in estimating transfer factors. Lastly, limited evidence is found to support the concept of allometric scaling functions for elemental concentrations in plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00411-010-0326-9 | DOI Listing |
Waste Manag
January 2025
ZheJiang University, Department of Mechanical Engineering, ZheJiang, 310000, China.
With the rapid increase in end-of-life smartphones, enhancing the automation and intelligence of their recycling processes has become an urgent challenge. At present, the disassembly of discarded smartphones predominantly relies on manual labor, which is not only inefficient but also associated with environmental pollution and high labor intensity. In the context of end-of-life smartphone recycling, complex situations such as stacking and occlusion are commonly encountered.
View Article and Find Full Text PDFBioresour Technol
January 2025
Energy Engineering, Division of Energy Science, Luleå University of Technology, Luleå 97187, Sweden. Electronic address:
CO/CH separation is crucial for biogas upgrading. In this study, the bamboo-derived activated carbons (BACs) were prepared with different ratios of potassium hydroxide (KOH)/bamboo charcoal (BC), and the hybrid sorbents of aqueous BACs were developed for CO/CH separation. Both the gas solubility and sorption rate were measured, and Henry's constant and liquid-side mass-transfer coefficient as well as the CO/CH selectivity were calculated.
View Article and Find Full Text PDFBiophys Rep (N Y)
January 2025
UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095, USA,; California Nano Systems Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
Membrane potential (MP) changes can provide a simple readout of bacterial functional and metabolic state or stress levels. While several optical methods exist for measuring fast changes in MP in excitable cells, there is a dearth of such methods for absolute and precise measurements of steady-state membrane potentials (MPs) in bacterial cells. Conventional electrode-based methods for the measurement of MP are not suitable for calibrating optical methods in small bacterial cells.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain.
Desalination of seawater by forward osmosis is a technology potentially able to address the global water scarcity problem. The major challenge limiting its widespread practical application is the design of a draw solute that can be separated from water by an energetically efficient process and then reused for the next cycle. Recent experiments demonstrate that a promising draw solute for forward-osmosis desalination is tetrabutylphosphonium 2,4,6-trimethylbenzenesulfonate ([P][TMBS]).
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Autmatic Control, University of Kaiserslautern-Landau, 67653 Kaiserslautern, Germany.
Harsh operating conditions imposed by vehicular applications significantly limit the utilization of proton exchange membrane fuel cells (PEMFCs) in electric propulsion systems. Improper/poor management and supervision of rapidly varying current demands can lead to undesired electrochemical reactions and critical cell failures. Among other failures, flooding and catalytic degradation are failure mechanisms that directly impact the composition of the membrane electrode assembly and can cause irreversible cell performance deterioration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!