Spermatogonia- stem cells and progenitors of adult spermatogenesis- are killed through a p53-regulated apoptotic process after gamma-irradiation but the death effectors are still poorly characterized. Our data demonstrate that both intrinsic and extrinsic apoptotic pathways are involved, and especially that spermatogonia can be split into two main populations, according to apoptotic effectors. Following irradiation both Dr5 and Puma genes are upregulated in the alpha6-integrin-positive Side Population (SP) fraction, which is highly enriched in spermatogonia. Flow cytometric analysis confirms an increased number of Dr5-expressing SP cells, and Puma-beta isoform accumulates in alpha6-integrin positive cellular extracts, enriched in spermatogonia. Trail-/- or Puma-/- spermatogonia display a reduced sensitivity to radiation-induced apoptosis. The TUNEL kinetics strongly suggest that the extrinsic and intrinsic pathways, via Trail/Dr5 and Puma respectively, could be engaged in distinct subpopulations of spermatogonia. Indeed flow cytometric studies show that Dr5 receptor is constitutively present on more than half of the undifferentiated progenitors (Kit- alpha6+ SP) and half of the differentiated ones (Kit+ alpha6+ SP). In addition after irradiation, Puma is not detected in the Dr5-positive cellular fraction isolated by immunomagnetic purification, while Puma is present in the Dr5-negative cell extracts. In conclusion, adult testicular progenitors are divided into distinct sub-populations by apoptotic effectors, independently of progenitor types (immature Kit-negative versus mature Kit-positive), underscoring differential radiosensitivities characterizing the stem cell/progenitors compartment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920820PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0012134PLOS

Publication Analysis

Top Keywords

radiation-induced apoptosis
8
testicular progenitors
8
apoptotic effectors
8
enriched spermatogonia
8
spermatogonia flow
8
flow cytometric
8
puma
5
spermatogonia
5
puma trail/dr5
4
trail/dr5 pathways
4

Similar Publications

Effective therapies for cognitive impairments induced by brain irradiation are currently lacking. This study investigated the therapeutic potential of hyperbaric oxygen therapy (HBOT) for radiation-induced brain injury in a randomized controlled experimental model using adult male Wistar rats. Adult male Wistar rats were divided into four experimental groups: 0 Gy whole brain radiotherapy (WBRT) with normal baric air (NBA) treatment, 0 Gy WBRT with HBOT, 10 Gy WBRT with NBA, and 10 Gy WBRT with HBOT.

View Article and Find Full Text PDF

Radiation dermatitis (RD) is a common side effect in patients receiving radiotherapy. Currently, clinical skincare approaches for acute RD vary widely among institutions and lack consensus. Hydrogen molecules, acting as radioprotective agents by selectively scavenging free radicals, have the potential to protect against RD.

View Article and Find Full Text PDF

Phagocytic clearance of apoptotic cancer cells (efferocytosis) by tumor-associated macrophages (TAMs) contributes in a substantial manner to the establishment of an immunosuppressive tumor microenvironment. This puts in context our observation that the female steroid hormone 17β-estradiol (E2) facilitates tumor immune resistance through cancer cell extrinsic Estrogen Receptor (ERalpha;) signaling in TAMs. Notable was the finding that E2 induces the expression of CX3CR1 in TAMs to enable efferocytosis of apoptotic cancer cells which results in the suppression of type I interferon (IFN) signaling.

View Article and Find Full Text PDF
Article Synopsis
  • Radiation therapy (RT) is crucial for cancer treatment but often damages surrounding normal tissues, leading to complications like fibrosis and decreased organ function.
  • Conventional RT promotes epithelial-mesenchymal transition (EMT), which is linked to tissue damage and cancer progression.
  • FLASH radiation therapy (FLASH-RT) offers a promising alternative by delivering high doses rapidly, potentially reducing normal tissue damage while preserving regenerative capacity and mitigating fibrosis through improved regulation of EMT pathways.
View Article and Find Full Text PDF

Cervical cancer (CC) is becoming a major health issue globally, and radiotherapy plays a crucial role in its treatment. However, the prognosis of some patients remains poor due to tumor resistance to the therapy. This study aimed to explore whether vitamin D could confer a more radiosensitive phenotype in CC based on our previous findings and detection using the database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!