Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Angiotensin II (Ang-II) displays inflammatory activity and is implicated in several cardiovascular disorders. This study evaluates the effect of cis- and trans (t)-resveratrol (RESV) in two in vivo models of vascular inflammation and identifies the cardioprotective mechanisms that underlie them. In vivo, Ang-II-induced arteriolar leukocyte adhesion was inhibited by 71% by t-RESV (2.1 mg/kg, i.v.), but was not affected by cis-RESV. Because estrogens influence the rennin-angiotensin system, chronic treatment with t-RESV (15 mg/kg/day, orally) inhibited ovariectomy-induced arteriolar leukocyte adhesion by 81%, partly through a reduction of cell adhesion molecule (CAM) expression and circulating levels of cytokine-induced neutrophil chemoattractant, MCP-1, and MIP-1alpha. In an in vitro flow chamber system, t-RESV (1-10 microM) undermined the adhesion of human leukocytes under physiological flow to Ang-II-activated human endothelial cells. These effects were accompanied by reductions in monocyte and endothelial CAM expression, chemokine release, phosphorylation of p38 MAPK, and phosphorylation of the p65 subunit of NF-kappaB. Interestingly, t-RESV increased the expression of peroxisome proliferator-activated receptor-gamma in human endothelial and mononuclear cells. These results demonstrate for the first time that the in vivo anti-inflammatory activity of RESV is produced by its t-RESV, which possibly interferes with signaling pathways that cause the upregulation of CAMs and chemokine release. Upregulation of proliferator-activated receptor-gamma also appears to be involved in the cardioprotective effects of t-RESV. In this way, chronic administration of t-RESV may reduce the systemic inflammatory response associated with the activation of the rennin-angiotensin system, thereby decreasing the risk of further cardiovascular disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1001043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!