Gray platelet syndrome (GPS) is an inherited bleeding disorder characterized by macrothrombocytopenia and absence of platelet α-granules resulting in typical gray platelets on peripheral smears. GPS is associated with a bleeding tendency, myelofibrosis, and splenomegaly. Reports on GPS are limited to case presentations. The causative gene and underlying pathophysiology are largely unknown. We present the results of molecular genetic analysis of 116 individuals including 25 GPS patients from 14 independent families as well as novel clinical data on the natural history of the disease. The mode of inheritance was autosomal recessive (AR) in 11 and indeterminate in 3 families. Using genome-wide linkage analysis, we mapped the AR-GPS gene to a 9.4-Mb interval on 3p21.1-3p22.1, containing 197 protein-coding genes. Sequencing of 1423 (69%) of the 2075 exons in the interval did not identify the GPS gene. Long-term follow-up data demonstrated the progressive nature of the thrombocytopenia and myelofibrosis of GPS resulting in fatal hemorrhages in some patients. We identified high serum vitamin B(12) as a consistent, novel finding in GPS. Chromosome 3p21.1-3p22.1 has not been previously linked to a platelet disorder; identification of the GPS gene will likely lead to the discovery of novel components of platelet organelle biogenesis. This study is registered at www.clinicaltrials.gov as NCT00069680 and NCT00369421.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3012593PMC
http://dx.doi.org/10.1182/blood-2010-05-286534DOI Listing

Publication Analysis

Top Keywords

gray platelet
8
platelet syndrome
8
natural history
8
gps
8
gps gene
8
syndrome natural
4
history large
4
large patient
4
patient cohort
4
cohort locus
4

Similar Publications

Introduction: Recent evidence suggests the relationship between periodontitis and systemic inflammation, which complete blood count can assess (CBC)-derived biomarkers such as neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR). We conducted this meta-analysis to evaluate the levels of NLR and PLR of patients with periodontitis compared to those of healthy controls.  METHODS: Web of Science, PubMed, ProQuest, Scopus, and Open Grey were searched for studies published before October 20, 2024, without any limitation on date and language; then, using the random-effects model, we reported a standardized mean difference (SMD) with a 95% confidence interval (CI).

View Article and Find Full Text PDF

Clinical and biochemical abnormalities in a feline model of GM2 activator deficiency.

Mol Genet Metab

November 2024

Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL 36849, United States of America; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849, United States of America. Electronic address:

Though it has no catalytic activity toward GM2 ganglioside, the GM2 activator protein (GM2A) is essential for ganglioside hydrolysis by facilitating the action of lysosomal ß-N-acetylhexosaminidase. GM2A deficiency results in death in early childhood due to rapid central nervous system deterioration similar to the related GM2 gangliosidoses, Tay-Sachs disease and Sandhoff disease. This manuscript further characterizes a feline model of GM2A deficiency with a focus on clinical and biochemical parameters that may be useful as benchmarks for translational therapeutic research.

View Article and Find Full Text PDF

Background: Bleeding is common in patients with haematological malignancies undergoing intensive therapy. We aimed to assess the effect of tranexamic acid on preventing bleeding and the need for platelet transfusions.

Methods: TREATT was an international, randomised, double-blind, parallel, phase 3 superiority trial conducted at 27 haematology centres in Australia and the UK.

View Article and Find Full Text PDF

PEGylation of indium phosphide quantum dots prevents quantum dot mediated platelet activation.

J Mater Chem B

December 2024

Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.

Article Synopsis
  • Quantum dots (QDs) are small semiconductor particles that could improve biomedical imaging and drug delivery, with Indium phosphide QDs covered by zinc sulphide being a more biocompatible option.
  • This study reveals that PEGylating these QDs significantly reduces platelet activation and aggregation, which is important to prevent excessive blood clotting.
  • By decreasing the interaction between QDs and platelets, PEGylation enhances the safety and effectiveness of QDs for use in medical applications.
View Article and Find Full Text PDF

Molecular basis of platelet granule defects.

J Thromb Haemost

November 2024

Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada. Electronic address:

Platelets are small, discoid, anucleate blood cells that play key roles in clotting and other functions involved in health and disease. Platelets are derived from bone marrow-resident megakaryocytes, which undergo a complex developmental process where they increase dramatically in size and produce an abundance of organelles destined for platelets. These organelles include mitochondria, lysosomes, peroxisomes and two unique types of secretory organelle: α and dense (δ) granules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!