Quantitative proteomic analysis of ribosome assembly and turnover in vivo.

J Mol Biol

Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, MB-33, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.

Published: October 2010

Although high-resolution structures of the ribosome have been solved in a series of functional states, relatively little is known about how the ribosome assembles, particularly in vivo. Here, a general method is presented for studying the dynamics of ribosome assembly and ribosomal assembly intermediates. Since significant quantities of assembly intermediates are not present under normal growth conditions, the antibiotic neomycin is used to perturb wild-type Escherichia coli. Treatment of E. coli with the antibiotic neomycin results in the accumulation of a continuum of assembly intermediates for both the 30S and 50S subunits. The protein composition and the protein stoichiometry of these intermediates were determined by quantitative mass spectrometry using purified unlabeled and (15)N-labeled wild-type ribosomes as external standards. The intermediates throughout the continuum are heterogeneous and are largely depleted of late-binding proteins. Pulse-labeling with (15)N-labeled medium time-stamps the ribosomal proteins based on their time of synthesis. The assembly intermediates contain both newly synthesized proteins and proteins that originated in previously synthesized intact subunits. This observation requires either a significant amount of ribosome degradation or the exchange or reuse of ribosomal proteins. These specific methods can be applied to any system where ribosomal assembly intermediates accumulate, including strains with deletions or mutations of assembly factors. This general approach can be applied to study the dynamics of assembly and turnover of other macromolecular complexes that can be isolated from cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953596PMC
http://dx.doi.org/10.1016/j.jmb.2010.08.005DOI Listing

Publication Analysis

Top Keywords

assembly intermediates
20
assembly
9
ribosome assembly
8
assembly turnover
8
ribosomal assembly
8
antibiotic neomycin
8
ribosomal proteins
8
intermediates
7
ribosome
5
proteins
5

Similar Publications

The mutually antagonistic relationship of atypical protein kinase C (aPKC) and partitioning-defective protein 6 (Par6) with the substrate lethal (2) giant larvae (Lgl) is essential for regulating polarity across many cell types. Although aPKC-Par6 phosphorylates Lgl at three serine sites to exclude it from the apical domain, aPKC-Par6 and Lgl paradoxically form a stable kinase-substrate complex, with conflicting roles proposed for Par6. We report the structure of human aPKCι-Par6α bound to full-length Llgl1, captured through an aPKCι docking site and a Par6 contact.

View Article and Find Full Text PDF

Minor spliceosome is responsible for recognizing and excising a specific subset of divergent introns during the pre-mRNA splicing process. Mutations in the unique snRNA and protein components of the minor spliceosome are increasingly being associated with a variety of germline and somatic human disorders, collectively termed as minor spliceosomopathies. Understanding the mechanistic basis of these diseases has been challenging due to limited functional information on many minor spliceosome components.

View Article and Find Full Text PDF

Understanding the chemical and physical mechanisms at play in 2D materials growth is critical for effective process development of methods such as chemical vapor deposition (CVD) as a toolbox for processing more complex nanostructures and 2D materials. A combination of density functional theory and microkinetic modeling is employed to comprehensively investigate the reaction mechanism governing the epitaxial growth of hexagonal boron nitride (hBN) on Ru(0001) from borazine. This analysis encompasses four key stages prior to the formation of the complete hBN overlayer: (i) adsorption, diffusion and deprotonation of borazine, (ii) dimerization and microkinetic modeling (iii) stability of larger borazine polymers and (iv) formation of nanoporous intermediates.

View Article and Find Full Text PDF

The lack of high-efficiency platinum (Pt)-based nanomaterials remains a formidable and exigent challenge in achieving high formic acid oxidation reaction (FAOR) and membrane electrode assembly (MEA) catalysis for direct formic acid fuel cell (DFAFC) technology. Herein, we report 16 Pt-based heterophase nanotrepang with rare earth (RE)-doped face-centered cubic Pt (fcc-Pt) and trigonal Pt-tellurium (t-PtTe) configurations ((RE-Pt)-PtTe HPNT). Yttrium (Y) is identified as the optimal dopant, existing as single sites and clusters on the surface.

View Article and Find Full Text PDF

The eukaryotic helicase MCM2-7, is loaded by ORC, Cdc6 and Cdt1 as a double-hexamer onto replication origins. The insertion of DNA into the helicase leads to partial MCM2-7 ring closure, while ATP hydrolysis is essential for consecutive steps in pre-replicative complex (pre-RC) assembly. Currently it is unknown how MCM2-7 ring closure and ATP-hydrolysis are controlled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!