Aldehyde dehydrogenase 1A3 is transcriptionally activated by all-trans-retinoic acid in human epidermal keratinocytes.

Biochem Biophys Res Commun

Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.

Published: September 2010

Retinoids are regulators of keratinocyte differentiation in the epidermis and important therapeutics in dermatology. The formation of the most active retinoid, all-trans-retinoic acid (RA) by oxidation of retinal is catalyzed by aldehyde dehydrogenases (ALDH), of which ALDH1A3 has been shown to be most efficient. Here we investigated the expression of ALDH1A3 in epidermal cultures. Three alternatively spliced mRNAs of ALDH1A3 were detected in skin cultures with the conventionally spliced mRNA being predominant. Among a panel of ALDH genes, only ALDH1A3 was upregulated by RA in primary keratinocytes. RA increased the expression of ALDH1A3 also in organotypic human skin cultures and in an epidermal explant in vitro whereas no upregulation was detected in dermal fibroblasts and HeLa cells. Our results indicate that the regulation of the retinoic acid metabolism in the epidermis involves transcriptional activation of ALDH1A3, possibly representing a positive feedback loop, which enhances the effect of exogenous RA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2010.08.035DOI Listing

Publication Analysis

Top Keywords

all-trans-retinoic acid
8
expression aldh1a3
8
skin cultures
8
aldh1a3
6
aldehyde dehydrogenase
4
dehydrogenase 1a3
4
1a3 transcriptionally
4
transcriptionally activated
4
activated all-trans-retinoic
4
acid human
4

Similar Publications

Meiosis and retinoic acid in the mouse fetal gonads: An unforeseen twist.

Curr Top Dev Biol

January 2025

Université de Strasbourg, IGBMC UMR 7104, Illkirch, France; CNRS, UMR 7104, Illkirch, France; Inserm, UMR-S 1258, Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. Electronic address:

In mammals, differentiation of germ cells is crucial for sexual reproduction, involving complex signaling pathways and environmental cues defined by the somatic cells of the gonads. This review examines the long-standing model positing that all-trans retinoic acid (ATRA) acts as a meiosis-inducing substance (MIS) in the fetal ovary by inducing expression of STRA8 in female germ cells, while CYP26B1 serves as a meiosis-preventing substance (MPS) in the fetal testis by degrading ATRA and preventing STRA8 expression in the male germ cells until postnatal development. Recent genetic studies in the mouse challenge this paradigm, revealing that meiosis initiation in female germ cells can occur independently of ATRA signaling, with key roles played by other intrinsic factors like DAZL and DMRT1, and extrinsic signals such as BMPs and vitamin C.

View Article and Find Full Text PDF

Multiple roles for retinoid signaling in craniofacial development.

Curr Top Dev Biol

January 2025

Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States. Electronic address:

Retinoic acid (RA) signaling plays multiple essential roles in development of the head and face. Animal models with mutations in genes involved in RA signaling have enabled understanding of craniofacial morphogenic processes that are regulated by the retinoid pathway. During craniofacial morphogenesis RA signaling is active in spatially restricted domains defined by the expression of genes involved in RA production and RA breakdown.

View Article and Find Full Text PDF

Retinoid signaling in pancreas development, islet function, and disease.

Curr Top Dev Biol

January 2025

University of Michigan, Department of Pharmacology, Caswell Diabetes Institute, Ann Arbor, MI, United States. Electronic address:

All-trans retinoic acid (ATRA) signaling is essential in numerous different biological contexts. This review highlights the diverse roles of ATRA during development, function, and diseases of the pancreas. ATRA is essential to specify pancreatic progenitors from gut tube endoderm, endocrine and exocrine differentiation, and adult islet function.

View Article and Find Full Text PDF

The multifaceted roles of retinoids in eye development, vision, and retinal degenerative diseases.

Curr Top Dev Biol

January 2025

Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States; Department of Chemistry, University of California Irvine, Irvine, CA, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States. Electronic address:

Vitamin A (all-trans-retinol; at-Rol) and its derivatives, known as retinoids, have been adopted by vertebrates to serve as visual chromophores and signaling molecules, particularly in the eye/retina. Few tissues rely on retinoids as heavily as the retina, and the study of genetically modified mouse models with deficiencies in specific retinoid-metabolizing proteins has allowed us to gain insight into the unique or redundant roles of these proteins in at-Rol uptake and storage, or their downstream roles in retinal development and function. These processes occur during embryogenesis and continue throughout life.

View Article and Find Full Text PDF

Retinoic acid homeostasis and disease.

Curr Top Dev Biol

January 2025

Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States. Electronic address:

Retinoids, particularly all-trans-retinoic acid (ATRA), play crucial roles in various physiological processes, including development, immune response, and reproduction, by regulating gene transcription through nuclear receptors. This review explores the biosynthetic pathways, homeostatic mechanisms, and the significance of retinoid-binding proteins in maintaining ATRA levels. It highlights the intricate balance required for ATRA homeostasis, emphasizing that both excess and deficiency can lead to severe developmental and health consequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!