BioDome regenerative sleeve for biochemical and biophysical stimulation of tissue regeneration.

Med Eng Phys

Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, MA 02155, United States.

Published: November 2010

Previous research on vertebrate limb regeneration indicates there are several mediating factors involved during the re-growth process. These factors are both biochemical and biophysical. While the phenomenon of adult limb regeneration does not occur naturally in mammalian species, prior research has focused mainly on biochemical modes of stimulating tissue growth and regeneration. The BioDome was aimed at developing a new experimental tool to permit the more systematic study of the impact of biophysical and biochemical factors on mammalian tissue regeneration. The BioDome is a multi-component sleeve assembly that encompasses the wound site of an amputated murine digit and provides an environment conducive to tissue regeneration. The studies showed that the BioDome was effective in supporting early stages of murine digit tip regeneration when combined with a porcine urinary bladder matrix (UBM) pepsin digest and electrical stimulation. The hydrated inner environment of the BioDome influenced regeneration, with additional effects seen with the application of electrical stimulation and pharmacological treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967604PMC
http://dx.doi.org/10.1016/j.medengphy.2010.07.010DOI Listing

Publication Analysis

Top Keywords

tissue regeneration
12
biochemical biophysical
8
regeneration
8
limb regeneration
8
regeneration biodome
8
murine digit
8
electrical stimulation
8
biodome
5
biodome regenerative
4
regenerative sleeve
4

Similar Publications

Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment.

Tissue Eng Regen Med

January 2025

College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.

Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.

Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

Evidence for Multiple Independent Expansions of Fox Gene Families Within Flatworms.

J Mol Evol

January 2025

Faculty of Biology, Institute of Evolutionary Biology, University of Warsaw, Ul. Żwirki I Wigury 101, 02-089, Warsaw, Poland.

Expansion and losses of gene families are important drivers of molecular evolution. A recent survey of Fox genes in flatworms revealed that this superfamily of multifunctional transcription factors, present in all animals, underwent extensive losses and expansions during platyhelminth evolution. In this paper, I analyzed Fox gene complement in four additional species of platyhelminths, that represent early-branching lineages in the flatworm phylogeny: catenulids (Stenostomum brevipharyngium and Stenostomum leucops) and macrostomorphs (Macrostomum hystrix and Macrostomum cliftonense).

View Article and Find Full Text PDF

Background/aims: Bruise is the extravasation of blood that may be mild or severe. Bone marrow mesenchymal stem cells (BM-MSCs) are one of the most promising cells used in regenerative medicine for treating many disorders. We aimed to evaluate the efficiency of BM-MSCs in treating cutaneous bruises.

View Article and Find Full Text PDF

Objective: The direction of this study was to detect and analyze the specific mechanism of anti-apoptosis in mesenchymal stem cells (MSCs) cells caused by high expression of BCL2.

Methods: Bioinformatics was completed in Link omics. GO analysis and KEGG analysis were carried out, and the grope tool of Link omics database was used to evaluate PPI information and other core path analysis information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!