Aging in the brain is a multicellular process manifesting as neurodegeneration and associated functional impairment. In the present study, we report that cerebellar granule neurons (CGNs) in culture show senescence-mediated molecular changes indicating establishment of aging processes in vitro. CGNs were viable for 5 weeks followed by cellular degeneration. Molecular changes correlated with cellular senescence and aging include the elevation of senescence-mediated beta galactosidase (SA-β-gal) activity and intracellular Ca(2+) levels. Decreased base excision repair (BER) as well as non-homologous end joining (NHEJ) activities in CGNs were also observed upon aging in vitro. The decrease in NHEJ activity was shown correlated with corresponding decrease in the levels of topoisomerase IIβ (topo IIβ), Ku 70 and Ku 80 suggesting a crucial role for topo IIβ in repair capacity of CGNs. These studies, besides establishing that CGNs would serve as a good in vitro model for analysis of aging phenomena, also brought out that topo IIβ, by virtue of its significant role in controlling NHEJ activity, would serve as an additional biomarker for studying aging process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2010.08.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!