Leptin the cytokine-like hormone is involved not only in local inflammations, but it regulates cholesterol biosynthesis in human monocytes. Since, monocyte-membrane composition in obesity shows considerable difference from control cells, our aim was to elucidate the concentration dependence of the effect of leptin in OW monocytes, and the downstream signaling of high and low leptin concentrations. Control and OW monocytes were stimulated with leptin in the presence or absence of different inhibitors. Our results are as follows: a concentration-dependent biphasic effect could only be detected in control monocytes whereas in OW cells only elevated cholesterol synthesis was found. The signal pathway of 50 ng/mL leptin stimulation involves Ca(2+) signal, activation of PI3K, MAPK and HMG CoA reductase. In the 500 ng/mL leptin-stimulated control monocytes the suppression of cholesterol synthesis was dependent on the Ca(2+) signal, the H-7 sensitive cPKC and PI3K activation, whereas in OW monocytes only PI3K was involved in increased cholesterol synthesis. We conclude that leptin-signaling in OW monocytes is characterized by Ca(2+) influx, abrogation of H-7 sensitive cPKC activation, and by PI3K mediated PKC activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.imbio.2010.06.012 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.
Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
College of Animal Sciences, Anhui Science and Technology University, Fengyang, 233100, China.
This study was aim to investigate the effects of lipoic acid (ALA) on performance, meat quality, serum biochemistry and antioxidant function of broilers under heat stress (HS). Two hundred1-day-old Cobb broilers were randomly divided into four treatment groups and each treatment consisted of 4 replicates of 10 broilers each. The treatment group adopts a 2 × 2 two-factor setting, which is divided into two diets (basic diet or 250 mg/kg ALA diet) and two temperatures (24 ± 1℃ or 33 ± 1℃).
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Orthopedic Surgery, Institute of Bone Tumor, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200092, China.
Recently, there has been burgeoning interest in the involvement of cholesterol metabolism in cancer. Squalene epoxidase (SQLE), as a critical rate-limiting enzyme in the cholesterol synthesis pathway, has garnered attention due to its overexpression in various cancer types, thereby significantly impacting tumor prognosis and resistance mechanisms. Firstly, SQLE contributes to unfavorable prognosis through diverse mechanisms, encompassing modulation of the PI3K/AKT signaling pathway, manipulation of the cancer microenvironment, and participation in ferroptosis.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.
Infections caused by fungal pathogens are a global health problem, and have created an urgent need for new antimicrobial strategies. This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers an optimized Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) approach. Cholesterol-Br was used as an initiator to synthesize a library of oligo-VDM (degree of polymerisation = 5, 10, 15, 20, and 25), with an α-terminal cholesterol group.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Faculty of Biology-Microbiology, University of Freiburg, Freiburg, Germany.
Bacterial degradation of ubiquitous and persistent steroids such as steroid hormones is important for their removal from the environment. Initial studies of steroid degradation in anaerobic bacteria suggested that ring-cleaving hydrolases are involved in oxygen-independent sterane skeleton degradation. However, the enzymes involved in ring A cleavage of the common intermediate androsta-1,4-diene-3,17-dione have remained unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!