A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Coexpression of fungal phytase and xylanase utilizing the cis-acting hydrolase element in Pichia pastoris. | LitMetric

Coexpression of fungal phytase and xylanase utilizing the cis-acting hydrolase element in Pichia pastoris.

FEMS Yeast Res

Microbial Cell Factory Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, Thailand.

Published: November 2010

Plant-based animal feed contains antinutritive agents, necessitating the addition of digestive enzymes in commercial feeds. Enzyme additives are costly because they are currently produced separately from recombinant sources. The coexpression of digestive enzymes in a single recombinant cell system would thus be advantageous. A coexpression system for the extracellular production of phytase and xylanase was established in Pichia pastoris yeast. The genes for each enzyme were fused in-frame with the α-factor secretion signal and linked by the 2A-peptide-encoding sequence. Each enzyme was expressed extracellularly as individual functional proteins. The specific activities of 2A-expressed phytase (PhyA-2A) and 2A-expressed xylanase (XylB-2A) were 9.3 and 97.3 U mg(-1) , respectively. Optimal PhyA-2A activity was observed at 55 degreesC and pH 5.0. PhyA-2A also exhibited broad pH stability from 2.5 to 7.0 and retained approximately 70% activity after heating at 90 degreesC for 5 min. Meanwhile, XylB-2A exhibited optimal activity at 50 degreesC and pH 5.5 and showed pH stability from 5.0 to 8.0. It retained >50% activity after incubation at 50 degreesC for 10 min. These enzyme properties are similar to those of individually expressed recombinant enzymes. In vitro digestibility test showed that PhyA-2A and XylB-2A are as efficient as individually expressed enzymes for hydrolyzing phytate and crude fiber in feedstuff, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1567-1364.2010.00669.xDOI Listing

Publication Analysis

Top Keywords

phytase xylanase
8
pichia pastoris
8
digestive enzymes
8
stability retained
8
degreesc min
8
individually expressed
8
coexpression fungal
4
fungal phytase
4
xylanase utilizing
4
utilizing cis-acting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!