Structure and association of asphaltenes from coal direct hydroliquefaction were studied by fluorescence spectrometry and UV-Vis absorption spectrometry in this paper. The results indicate that asphaltene is aromatic mixtures mainly containing naphthalene nucleus and shows strong fluorescent characteristic. The forming of exciplex between asphaltene and solvent results in the red shift of fluorescence peak and fluorescence quenching of asphaltene that increases with the polarity and electron acceptability. The self-aggregation of asphaltene is formed by non-covalent bond interaction, so that the asphaltene liquefied at higher temperture that shows high aromaticity has stronger association than that liquefied at lower temperature. Aggregation of asphaltene has been found to be a gradual process, in which there is no critical aggregation constant observed, and the inflection point of the plot of apparent fluorescence intensity as a function of asphaltene concentration varies with the excitation wavelength.
Download full-text PDF |
Source |
---|
Sci Rep
January 2025
Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
Due to the unique properties of nanoparticles (NPs), their application has been proposed as an innovative and promising enhanced oil recovery (EOR) technique. They enhance oil recovery by improving EOR mechanisms including decreasing interfacial tension (IFT), wettability alteration to water-wet, and preventing asphaltene precipitation. In this study, FeO@Gelatin NPs were synthesized by a convenient and single-step method and then investigated for EOR purposes for the first time.
View Article and Find Full Text PDFLangmuir
January 2025
Hubei Key Laboratory of Oil and Gas Exploration and Development Theory and Technology (China University of Geosciences), Wuhan 430074, China.
The strong solid-liquid interaction leads to the complicated occurrence characteristics of shale oil. However, the solid-liquid interface interaction and its controls of the occurrence state of shale oil are poorly understood on the molecular scale. In this work, the adsorption behavior and occurrence state of shale oil in pores of organic/inorganic matter under reservoir conditions were investigated by using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations.
View Article and Find Full Text PDFMolecules
December 2024
College of Civil and Transportation Engineering, Hohai University, No. 1, Xikang Road, Nanjing 210098, China.
Asphaltenes, as the most complex and strongly polar component among the four components of asphalt, have a significant impact on the macroscopic physicochemical properties of asphalt. Currently, the vast variety of molecular structures used to characterize asphaltenes increases the construction complexity of asphalt molecular models. To construct a more realistic asphalt molecular model and reduce the construction difficulty, this investigation obtains the molecular morphology, molecular polarity, and infrared spectrum indicators of 21 asphaltene molecules through quantum chemical calculations.
View Article and Find Full Text PDFACS Omega
December 2024
College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China.
Langmuir
January 2025
Department of Chemistry, Faculty of Science, Ilam University, P.O. Box 69315516, Ilam, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!