Raman spectra of stolzite-structured PbWO4 crystal were recorded from 298 to 1 473 K. All the appearing vibrational modes were interpreted and assigned. The most intense mode at 902.7 cm(-1), which is identified as the internal mode upsilon1(Ag) of symmetrical stretching attributed to the vibration of [WO4]2- tetrahedron. Temperature dependent characteristics of the Raman spectra of the crystal were investigated. Band half-widths widened accompanied by the relative intensity decreased, and the lattice became more disorder with the increase in temperature. As being heated up to 1 398 K, PbWO4 crystals began to be melting and have completely transformed to liquid state at 1 473 K, while the internal vibrational modes of isolated [WO4]2- tetrahedron have appeared and the symmetry of vibrational modes transformed from S4 in crystal into Td of [WO4]2- in melt. It suggested that the isolated [WO4]2- structure unit exists in the melt.
Download full-text PDF |
Source |
---|
Sci Rep
December 2024
School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK.
Osteoarthritis (OA) is a complex disease of cartilage characterised by joint pain, functional limitation, and reduced quality of life with affected joint movement leading to pain and limited mobility. Current methods to diagnose OA are predominantly limited to X-ray, MRI and invasive joint fluid analysis, all of which lack chemical or molecular specificity and are limited to detection of the disease at later stages. A rapid minimally invasive and non-destructive approach to disease diagnosis is a critical unmet need.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Institute for Theoretical and Applied Electromagnetics RAS, Moscow 125412, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia.
In this study, we have investigated the surface-enhanced Raman scattering (SERS) spectra of myoglobin on silver substrates with different morphology. The aim was to determine the optimal parameters of analyte and substrate preparation for obtaining of high-amplitude SERS spectra of proteins. It is shown that not only the morphology of the silver film, but also the method of analyte molecules deposition on the SERS substrate plays an important role.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Biochemistry and Chemistry, La Trobe University, Bundoora, VIC 3086, Australia.
Surface-enhanced Raman scattering (SERS) is a powerful optical sensing platform that amplifies the target signals by Raman scattering. Despite SERS enabling a meager detection limit, even at the single-molecule level, SERS also tends to equally enhance unwanted molecules due to the non-specific binding of noise molecules in clinical samples, which complicates its use in complex samples such as bodily fluids, environmental water, or food matrices. To address this, we developed a novel non-fouling biomimetic SERS sensor by self-assembling an anti-adhesive, anti-fouling, and size-selective Lubricin (LUB) coating on gold nanoparticle (AuNP) functionalized glass slide surfaces via a simple drop-casting method.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Physics and Astronomy, Curtin University, Perth, Western Australia 6102, Australia.
Accurate Rayleigh and Raman scattering cross sections, tensor components, depolarization ratios, and reversal coefficients for all rovibrational transitions within the X1Σg+ ground electronic state of H2 have been calculated. Raman spectra have been generated using these data. A method for calculating Raman scattering cross sections is formulated that is valid below the ionization threshold and in the region containing resonances, which explicitly accounts for all bound and dissociative vibrational levels of the bound intermediate electronic states and approximately accounts for the ionization continuum.
View Article and Find Full Text PDFAppl Spectrosc
December 2024
Zentrum für Rieskrater und Impaktforschung, Nördlingen, Germany.
In situ optical analytical spectroscopies offer great geochemical insights due to their capability to resolve the chemical composition of regolith surfaces of rocky celestial bodies. The use of suitable calibration targets improves the precision of mineral determination, which is of critical importance for short-living, low-mobility landers, and enables, in special cases, determination of elemental composition. We investigate the capabilities of three space-relevant optical analytical techniques used for in situ mineralogical analysis, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!