[Responses of soil properties to ecosystem degradation in Karst region of northwest Guangxi, China].

Ying Yong Sheng Tai Xue Bao

Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.

Published: May 2010

Four typical ecosystems, i.e., maize-sweet potato rotational cultivated land (KMS), grazing grassland burned annually in winter (KGB), natural restoration land (KNR), and primary forest land (KPF), in Karst region of northwest Guangxi were selected to investigate the responses of soil nutrients (C, N and P), soil microbial biomass, and soil structure to the degradation of ecosystem. The contents of soil organic C, total N and P, and soil microbial biomass C, N, and P were significantly higher in KPF than in KMS, KGB, and KNR (P < 0.01). In the latter three degraded ecosystems, the contents of soil organic C and total N were in the sequence of KNR>KGB> KMS but the difference was not significant, soil total P content in KMS (0.87 g x kg(-1)) was 2.07 and 9.67 times of that in KNR and KGB, respectively (P < 0.01), and soil microbial biomass C, N and P contents were significantly higher in KGB and KNR than in KMS (P < 0.05). The soil microbial biomass C was significantly higher in KGB than in KNR (P < 0.05), but there were no significant differences in soil microbial biomass N and P between the two ecosystems. These results illustrated that the reduction of human activity could induce a slight increase of soil organic C in Karst degraded ecosystems, and proper grazing and natural restoration could be the feasible modes for the restoration of degraded ecosystem. Soil microbial biomass was more sensitive in response to the change of ecosystem, being able to be used as a sensitive indicator to reflect the change of degraded ecosystem in Karst region. In KPF, KNR, and KGB, soil water-stable macro-aggregates (> 0.25 mm) accounted for more than 70%, and dominated by >2 mm aggregates; while in KMS, soil water-stable macro-aggregates only occupied 40.34%, and dominated by 2-0.25 mm aggregates. The destruction rate of soil structure in KMS, KGB, KNR, and KPF was 51.62%, 23.48%, 9.09%, and 9.46%, respectively (P < 0.05), indicating that human disturbance or farming practice destroyed soil macro-aggregates, and made the destruction rate of soil structure increased. To reduce human disturbance and implement natural rehabilitation would be the suitable ecological restoration strategy in Karst region.

Download full-text PDF

Source

Publication Analysis

Top Keywords

soil microbial
24
microbial biomass
24
soil
17
karst region
16
kgb knr
16
soil structure
12
soil organic
12
region northwest
8
northwest guangxi
8
natural restoration
8

Similar Publications

The extensive mining of bastnasite (CeFCO) has caused pollution of lanthanum (La), cerium (Ce), and fuorine (F) in the surrounding farmland soil, severely threatening the safety of the soil ecosystem. However, the interaction effects of various chemical fractions of La, Ce, and F on the composition of microbial communities are unclear. In our study, high-throughput sequencing was performed based on the pot experiments of four types of combined pollution soils, i.

View Article and Find Full Text PDF

Exploring the significance of different amendments to improve phytoremediation efficiency: focus on soil ecosystem services.

Environ Sci Pollut Res Int

December 2024

Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France.

Phytoremediation is recognized as an environmentally, economically and socially efficient phytotechnology for the reclamation of polluted soils. To improve its efficiency, several strategies can be used including the optimization of agronomic practices, selection of high-performance plant species but also the application of amendments. Despite evidences of the benefits provided by different types of amendments on pollution control through several phytoremediation pathways, their contribution to other soil ecosystem functions supporting different ecosystem services remains sparsely documented.

View Article and Find Full Text PDF

The aim of this research is to create an automated system for identifying soil microorganisms at the genera level based on raw microscopic images of monocultural colonies grown in laboratory environment. The examined genera are: Fusarium, Trichoderma, Verticillium, Purpureolicillium and Phytophthora. The proposed pipeline deals with unprocessed microscopic images, avoiding additional sample marking or coloration.

View Article and Find Full Text PDF

Polycyclic aromatic compounds and petroleum hydrocarbons (PHs) are hazardous pollutants and seriously threaten the environment and human health. However, native microbial communities can adapt to these toxic pollutants, utilize these compounds as a carbon source, and eventually evolve to degrade these toxic contaminants. With this in mind, we isolated 26 bacterial strains from various environmental soil samples.

View Article and Find Full Text PDF

Metabolomic interpretation of bacterial and fungal contribution to per- and polyfluoroalkyl substances interface migration in waterlogged paddy fields.

Environ Pollut

December 2024

Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China. Electronic address:

Per- and polyfluoroalkyl substances (PFAS) are widely distributed in paddy soils, and their multi-phase partitioning in soil fractions was proved to be strongly interact with soil microbial community composition and functions. Despite this, soil bacterial and fungal metabolic molecular effects on PFAS water-soil interface migration in waterlogged paddy fields still remain unclear. This study integrated soil untargeted metabolomics with microbial amplicon sequencing to elucidate soil metabolic modulations of 15 PFAS interface release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!