A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Influence of light and temperature factors on biomass accumulation of winter wheat in field]. | LitMetric

[Influence of light and temperature factors on biomass accumulation of winter wheat in field].

Ying Yong Sheng Tai Xue Bao

Gansu Province Key Laboratory of Arid Climatic Change and Reducing Disaster/Key Open Laboratory of Arid Climatic Change and Disaster Reduction, Institute of Arid Meteorology, China Meteorological Administration, Lanzhou 730020, China.

Published: May 2010

To explore the influence of light and temperature factors on the biomass accumulation of winter wheat at its development stages and in different organs, this paper analyzed the variation patterns of the biomass accumulation and the influence of TEP (thermal effectiveness photosynthetically active radiation) on the accumulation at each development stage, based on the observation data from the Xifen Agrometeorological Experiment Station in Gansu Province, including winter wheat phenophase and yield factors in 1981-2008, biomass at three-leaf, over-wintering, jointing, heading, milky maturity, and maturity stages in 1995-2008, and meteorological data in 1995-2008. The biomass accumulation of winter wheat in its whole growth period presented "S" curve, with the maximum value at heading-milky maturity stage. Since 1981, the TEP at heading-milky maturity stage increased with a rate of 3. 314 MJ x m(-2) x a(-1), and the TEP at other stages varied as parable curves. The TEP at turning green-jointing and milky maturity-maturity stages had a higher value in the 1990s and a lower value in the 1980s and early 21st century, while that at jointing-heading stage had a lower value in the 1990s but a higher value in the 1980s and early 21st century. There was a significant correlation between the TEP at each development stage and the actual yield. The LAI (leaf area index) at each development stage also had a significant correlation with the utilization rate of TEP at corresponding stage. When the LAI at jointing and heading stages was increased by 1, the utilization rate of TEP was correspondingly increased by 0.049 and 0.259 g x MJ(-1), respectively.

Download full-text PDF

Source

Publication Analysis

Top Keywords

biomass accumulation
16
winter wheat
16
accumulation winter
12
development stage
12
light temperature
8
temperature factors
8
factors biomass
8
jointing heading
8
heading-milky maturity
8
maturity stage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!