The aims of this study were to (1) examine the extent of bacterial contamination of soils subjected to exposure to dairy sewage sludge applied to soils as measured by determination of number of bacteria from the Escherichia coli family and (2) determine the effects of dairy sewage sludge and straw on populations of other microbial species present in gray-brown podzolic soil. The gray-brown podzolic soil was formed from heavy loamy sand, which is characterized by the following granulometric composition: a sand fraction, 65%; a silt fraction, 19%; and a silt and clay fraction; 16%. The brown soil was formed from silt-loam and characterized by the following granulometric composition of silty-clay deposit: sand fraction, 8%; silt fraction, 48%; and clay and silt fraction, 46%. In dairy sewage sludge the total bacteria number as defined by Alef and Nannipieri (1995) was 51 x 10(4) colony-forming units (cfu)/ kg dry matter (dm), fungi total number 10 x 10(3) cfu/ kg dm, and E. coli bacteria 9.5 x 10(3) most probable number (MPN)/kg dm. In dairy sewage sludge mixed with straw, total number of bacteria and total number of fungi decreased to 10(3) and 10(2), respectively. Competition for nitrogen, glucose, and lactose and organic acids such as acetic and succinic with soil microorganisms, as well as soil conditions such as lack of oxygen, lower soil pH, and temperature, may account for the reduction in the number of E. coli bacteria in soils to which dairy sewage sludge was applied. Dairy sewage sludge may provide a beneficial impact on soil environment and adversely affect microorganisms such that dairy sewage sludge may be used as a safe organic fertilizer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15287394.2010.491777 | DOI Listing |
PLoS One
December 2024
Faculty of Agriculture, Department of Food Science and Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
This study aimed to explore the production of red pigment from Monascus purpureus in waste culture medium and its potential health benefits. Subsequently, the M. purpureus cultivated in a medium containing dairy sludge as waste, the extracted pigment was purified, and subjected to various analyses, including liquid chromatography mass spectrometry (LCMS) and nuclear magnetic resonance (NMR) to verify its purity, high-pressure liquid chromatography (HPLC) to measure the citrinin levels, microbial, and antioxidant activity.
View Article and Find Full Text PDFPLoS Negl Trop Dis
November 2024
Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
Environ Res
December 2024
Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China. Electronic address:
Bioresour Technol
December 2024
Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; School of Civil, Environmental, and Resources-Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea. Electronic address:
Dairy sludge (DS) consists of organic compounds such as lipids and valuable inorganic elements. Biodiesel recovery from dairy sludge extract (DSE), using conventional acid (trans)esterification yielded only 16.5 wt%.
View Article and Find Full Text PDFSci Total Environ
November 2024
Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia. Electronic address:
Unpolluted freshwater is a crucial component for maintaining the health of humans. This study aimed to investigate the bioaccumulation and potential health hazards of heavy metal contaminants (Fe, Cd, Cr, Cu, Pb) in water, sediments, and tissues of the golden mahseer fish (Tor putitora) from Zhob River to assess their suitability for human consumption. Samples (soil, water, and fish) were collected from the Zhob River, and Flame Atomic Absorption Spectrometry (FAAS) was employed to measure the concentration of these metals found in soil, water, and various fish body tissues (muscles, skin, gills, and liver).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!