Lipid disturbances in psoriasis: an update.

Mediators Inflamm

Department of Dermatology, Venereology and Paediatric Dermatology, Medical University of Lublin, ul. Radziwillowska 13, 20-080 Lublin, Poland.

Published: November 2010

Psoriasis is a common disease with the population prevalence ranging from 2% to 3%. Its prevalence in the population is affected by genetic, environmental, viral, infectious, immunological, biochemical, endocrinological, and psychological factors, as well as alcohol and drug abuse. In the recent years, psoriasis has been recognised as a systemic disease associated with numerous multiorgan abnormalities and complications. Dyslipidemia is one of comorbidities in psoriatic patients. Lipid metabolism studies in psoriasis have been started at the beginning of the 20th century and are concentrated on skin surface lipids, stratum corneum lipids and epidermal phospholipids, serum lipids, dermal low-density lipoproteins in the psoriatic skin, lipid metabolism, oxidative stress and correlations between inflammatory parameters, lipid parameters and clinical symptoms of the disease. On the basis of the literature data, psoriasis can be described as an immunometabolic disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914266PMC
http://dx.doi.org/10.1155/2010/535612DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
8
psoriasis
5
lipid
4
lipid disturbances
4
disturbances psoriasis
4
psoriasis update
4
update psoriasis
4
psoriasis common
4
disease
4
common disease
4

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

The Impact of Selenium on the Physiological Activity of Yeast Cells ATCC 7090 and CCY 20-2-26.

Front Biosci (Landmark Ed)

January 2025

Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland.

Background: This study investigated the selenium-binding capacity of the biomass of two yeast strains, American Type Culture Collection (ATCC) 7090 and CCY 20-2-26.

Methods: The studies carried out methods of bioaccumulation by yeast biomass. Inorganic selenium was added to the culture media as an aqueous solution of NaSeO at concentrations ranging from 0 to 40 mg Se/L.

View Article and Find Full Text PDF

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis.

Front Biosci (Landmark Ed)

January 2025

The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!