Objective: Clinical studies indicate that the remission, regression or both of nephrotic-range albuminuria are exerted by angiotensin II receptor blockers (ARBs) in diabetes. The current study was performed to test the hypothesis that these effects of ARBs are associated with regression of glomerular podocyte injury.

Methods: We examined the effects of an ARB, olmesartan, on glomerular podocyte injury in type 2 diabetic Otsuka-Long-Evans-Tokushima-Fatty rats with overt albuminuria.

Results: At baseline (55-week-old), diabetic Otsuka-Long-Evans-Tokushima-Fatty rats showed severe albuminuria with desmin-positive areas (an index of podocyte injury) in both superficial and juxtamedullary glomeruli, and podocyte injury was much greater in juxtamedullary than in superficial glomeruli. At 75-week-old, Otsuka-Long-Evans-Tokushima-Fatty rats had developed more severe albuminuria and superficial glomerular podocyte injury, whereas juxtamedullary glomerular podocyte injury did not advance further. Olmesartan (10 mg/kg per day) decreased albuminuria and superficial glomerular desmin staining to levels that were lower than those at baseline, whereas advanced juxtamedullary glomerular podocyte injury was not changed.

Conclusion: The current study demonstrates for the first time that juxtamedullary glomerular podocyte injury reaches a severe condition at an earlier time than superficial glomerular podocyte injury during the progression of overt albuminuria in type 2 diabetic rats. Our data also support the hypothesis that the antialbuminuric effects of ARBs are associated with regression of superficial glomerular podocyte injury in type 2 diabetes with nephrotic-range albuminuria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955758PMC
http://dx.doi.org/10.1097/HJH.0b013e32833dfcdaDOI Listing

Publication Analysis

Top Keywords

podocyte injury
40
glomerular podocyte
36
superficial glomerular
20
injury type
12
type diabetic
12
otsuka-long-evans-tokushima-fatty rats
12
juxtamedullary glomerular
12
podocyte
11
glomerular
10
injury
10

Similar Publications

The Role of Podocytes in Lupus Pathology.

Curr Rheumatol Rep

December 2024

Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS-937, Boston, MA, 02215, USA.

Purpose Of Review: Kidney injury due to lupus nephritis (LN) is a severe and sometimes life-threatening sequela of systemic lupus erythematosus. Autoimmune injury to podocytes has been increasingly demonstrated to be a key driver of LN-related kidney injury because these cells play key roles in glomerular filtration barrier homeostasis. Irreparable podocyte injury impairs these processes and can lead to proteinuria, which is an indicator of poor prognosis in LN.

View Article and Find Full Text PDF

Background: Lupus podocytopathy (LP) is a non-immune complex-mediated glomerular lesion in systemic lupus erythematosus (SLE), characterized by the diffuse effacement of podocyte processes without immune complex deposition or with only mesangial immune complex deposition. LP is a rare cause of nephrotic syndrome in SLE patients with implications for prognosis and treatment.

Case Report: We present the case of a 28-year-old woman with a medical history of type 1 diabetes mellitus (T1DM) who presented with lower limb edema, dyspnea, hypercholesterolemia, with nephrotic range proteinuria, without acute kidney injury, and laboratory findings compatible with auto-immune hemolytic anemia.

View Article and Find Full Text PDF

Background: Diabetes often causes diabetic nephropathy (DN), a serious long-term complication. It is characterized by chronic proteinuria, hypertension, and kidney function decline, can progress to end-stage renal disease, lowering patients' quality of life and lifespan. Inflammation and apoptosis are key to DN development.

View Article and Find Full Text PDF

Loss of glomerular aldolase B in diabetic nephropathy promotes renal fibrosis via activating Akt/GSK/β-catenin axis.

J Adv Res

December 2024

State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, Nanjing University School of Life Sciences, Nanjing, Jiangsu 210093, China. Electronic address:

Objective: Diabetic nephropathy (DN), characterized by a complex and multifaceted pathogenesis, stands as the foremost catalyst behind end-stage renal disease (ESRD). This study aims to analyze the level and non-metabolic role of glomerular aldolase B (ALDOB) in DN progression.

Methods: Glomerular proteomics and transcriptome are analyzed from 50 DN patients and 25 controls, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!