Heme oxygenase-1 (HO-1), an enzyme degrading heme to carbon monoxide, free iron, and biliverdin, participates in the cell defence against oxidative stress and it has been speculated that it might be a new therapeutic target for neuroprotection. In this review, we discuss recent findings on the regulation of the HO-1 gene, Hmox1, in the brain with particular focus on the transcription factors Nrf2 and HIF-1. Functional polymorphisms in Hmox1 have been associated with high risk for Alzheimer's and Parkinson's disease. Hence, we review the current knowledge on the role of HO-1 and its enzymatic products on these two pathologies as well as ischemic brain injury. HO-1 modulates the inflammatory response in several scenarios, and therefore we discuss its role in modulation of the innate immune cell of the brain, microglia. From the therapeutic side, the blood brain barrier represents an obstacle to directly modulate heme oxygenase activity, but drugs activating the transcription actor Nrf2, which have a very diverse molecular structure, may be good candidates to induce HO-1 in concert with other antioxidant and detoxification enzymes. A more complete understanding on the mechanisms regulating HO-1 expression in brain cells and how these mechanisms are involved in neuropathological changes will be essential to develop these new therapeutic approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1389450111009011517 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!