In order to minimize the invasiveness of laparoscopic surgery, different techniques are emerging from research to clinical practice. Whether the incision is performed on the outside - as in Single Port Laparoscopy (SPL) - or on the inside - as in Natural Orifice Transluminal Endoscopic Surgery (NOTES) - of the patient's body, inserting and operating all the instruments from a single access site seems to be the next challenge in surgery. Magnetic guidance has been recently proposed for controlling surgical tools deployed from a single access. However, the exponential drop of magnetic field with distance makes this solution suitable only for the upper side of the abdominal cavity in nonobese patients. In the present paper we introduce a polymeric anchoring mechanism to lock surgical assistive tools inside the gastric cavity, based on the use of mucoadhesive films. Mucoadhesive properties of four formulations, with different chemical components and concentration, are evaluated by using both in vitro and ex vivo test benches on porcine stomach samples. Hydration of mucoadhesive films by contact with the aqueous mucous layer is analyzed by means of in vitro swelling tests, whereas optimal preloading conditions and adhesion performances, in terms of detachment force, supported weight and size are investigated ex vivo. Mucoadhesion is observed with all the four formulations. For a contact area of 113 mm(2), the maximum normal and shear detachment forces withstood by the adhesive film are 2,6 N and 1 N respectively. These values grow up to 12,14 N and 4,5 N when the contact area increases to 706 mm(2). Lifetime of the bonding on the inner side of the stomach wall was around two hours. Mucoadhesive anchoring represents a fully biocompatible and safe approach to deploy multiple assistive surgical tools on mucosal tissues by minimizing the number of access ports. This technique has been quantitatively assessed ex vivo for anchoring on the inner wall of the gastric cavity or in gastroscopic surgery. By properly varying the chemical formulation, this approach can be extended to other cavities of the human body.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/13645706.2010.496955 | DOI Listing |
Life (Basel)
January 2025
Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Facial thread lifting has emerged as a minimally invasive alternative to traditional face-lifting procedures, with particular emphasis on U-shaped and I-shaped barbed threads. This review analyzes the anatomical considerations, procedural techniques, and clinical outcomes of different thread types for facial rejuvenation. The study examines the mechanical principles and lifting mechanisms of U-shaped "suspension type" threads versus I-shaped threads, highlighting their distinct characteristics and applications.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Research Institute for Systems Biology and Medicine (RISBM), Nauchnyi proezd 18, 117246 Moscow, Russia.
SARS-CoV-2 viral entry requires membrane fusion, which is facilitated by the fusion peptides within its spike protein. These predominantly hydrophobic peptides insert into target membranes; however, their precise mechanistic role in membrane fusion remains incompletely understood. Here, we investigate how FP1 (SFIEDLLFNKVTLADAGFIK), the N-terminal fusion peptide, modulates membrane stability and barrier function across various model membrane systems.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA.
: FtsZ, a eukaryotic tubulin homolog and an essential component of the bacterial divisome, is the target of numerous antimicrobial compounds as well as proteins and peptides, most of which inhibit FtsZ polymerization dynamics. We previously showed that the Kil peptide from bacteriophage λ inhibits cell division by disrupting FtsZ ring assembly, and this inhibition requires the presence of the essential FtsZ membrane anchor protein ZipA. : To investigate Kil's molecular mechanism further, we employed deletions, truncations, and molecular modeling to identify the minimal residues necessary for its activity.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China. Electronic address:
Although various biochars from different biomass materials have been developed to remediate dye-contaminated environments, the removal capabilities of pristine biochar for dyes urgently require further enhancement due to insufficient surface adsorption sites. To introduce more adsorption sites, this work proposes a simple approach to fabricate coconut shell biochar (CSB) based adsorbent by anchoring zeolitic imidazolate framework-8 (ZIF-8) via the active sites provided by polydopamine (PDA)-coated CSB. The nucleation sites provided by the PDA layer promote the dispersion of ZIF-8 on the surface of CSB, resulting in sufficient adsorption sites for removing malachite green (MG) and rhodamine B (RB) from wastewater.
View Article and Find Full Text PDFASN Neuro
January 2025
Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
In light of the increasing importance for measuring myelin ratios - the ratio of axon-to-fiber (axon + myelin) diameters in myelin internodes - to understand normal physiology, disease states, repair mechanisms and myelin plasticity, there is urgent need to minimize processing and statistical artifacts in current methodologies. Many contemporary studies fall prey to a variety of artifacts, reducing study outcome robustness and slowing development of novel therapeutics. Underlying causes stem from a lack of understanding of the myelin ratio, which has persisted more than a century.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!