Palladium-catalyzed cross-coupling reaction of terminal alkynes with arylboronic acids has been described. In the presence of Pd(OAc)(2) and Ag(2)O, a variety of terminal alkynes, including electron-poor terminal alkynes, smoothly underwent the reaction with numerous boronic acids to afford the corresponding internal alkynes in moderate to good yields. Moreover, this methodology was applied to the synthesis of 1H-isochromenes and diynes. It is noteworthy that the reaction proceeds under ligand-free and relative lower loading Pd conditions, and the maximal TONs (turnover numbers) of the reaction are up to 720,000.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo101063p | DOI Listing |
Nat Commun
December 2024
Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA.
The rising demand for gold requires innovative methods for its recovery from e-waste. Here we present the synthesis of two tetrazine-based vinyl-linked covalent organic frameworks: TTF-COF and TPE-COF that adsorb gold ions and nanoparticles and catalyze the carboxylation of terminal alkynes. These covalent organic frameworks have low band gaps and high photocurrent responses.
View Article and Find Full Text PDFJACS Au
December 2024
Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
We present a new type of elementoboration reaction, the thioboration of terminal alkynes. This method enables highly controllable regio-/stereo-/chemoselective - and -thioboration on demand, affording synthetically versatile and densely functionalized vinyl boron/vinyl sulfide derivatives in a straightforward manner without the need for a transition-metal catalyst.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.
Hydroalkylation of terminal alkynes is a powerful approach to the synthesis of disubstituted alkenes. However, its application is largely unexplored in the synthesis of α,β-unsaturated carbonyls, which are common among synthetic intermediates and biologically active molecules. The thermodynamically less stable -isomers of activated alkenes have been particularly challenging to access because of their propensity for isomerization and the paucity of reliable -selective hydroalkylation methods.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC). Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
Bimetallic complexes have demonstrated a great ability to enhance the activity of monometallic systems for bond activation and catalysis. In this work, we explore the opposite approach: using a second metal to passivate the activity of another by reversible bimetallic inhibition. To do so we have synthesized a family of nine electrophilic gold complexes of formula Au(PR)(NTf) ([NTf] = [N(SOCF)]) that can act as inhibitors in the semihydrogenation of terminal and internal alkynes catalyzed by the iconic iridium Vaska complex IrCl(CO)(PPh).
View Article and Find Full Text PDFJ Org Chem
December 2024
School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
Although the radical hydroboration of alkenes with N-heterocyclic carbene (NHC) borane is well documented, the radical hydroboration of alkynes, especially terminal alkynes, remains challenging. Herein, a photoredox-catalyzed radical -hydroboration of alkynes with NHC borane has been developed, which provided various alkenyl boron compounds in moderate to good yields. This protocol exhibits a broad substrate scope, as both internal and terminal alkynes were compatible.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!