Support vector machines (SVMs) have become a popular technique in the chemometrics and bioinformatics field, and other fields, for the classification of complex data sets. Especially because SVMs are able to model nonlinear relationships, the usage of this technique has increased substantially. This modeling is obtained by mapping the data in a higher-dimensional feature space. The disadvantage of such a transformation is, however, that information about the contribution of the original variables in the classification is lost. In this paper we introduce an innovative method which can retrieve the information about the variables of complex data sets. We apply the proposed method to several benchmark data sets and a metabolomics data set to illustrate that we can determine the contribution of the original variables in SVM classifications. The corresponding visualization of the contribution of the variables can assist in a better understanding of the underlying chemical or biological process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac101338y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!