Flow-through experiments were carried out to investigate the role of transverse dispersion on the isotopic behavior of an organic compound during conservative and bioreactive transport in a homogeneous porous medium. Ethylbenzene was selected as model contaminant and a mixture of labeled (perdeuterated) and light isotopologues was continuously injected in a quasi two-dimensional flow-through system. We observed a significant fractionation of ethylbenzene isotopologues during conservative transport at steady state. This effect was particularly pronounced at the plume fringe and contrasted with the common assumption that physical processes only provide a negligible contribution to isotope fractionation. Under the experimental steady state conditions, transverse hydrodynamic dispersion was the only process that could have caused the observed fractionation. Therefore, the measured isotope ratios at the outlet ports were interpreted with different parameterizations of the transverse dispersion coefficient. A nonlinear compound-specific parameterization showed the best agreement with the experimental data. Successively, bioreactive experiments were performed in two subsequent stages: a first oxic phase, involving a single strain of ethylbenzene degraders and a second phase with aerobic and anaerobic (i.e., ethylbenzene oxidation coupled to nitrate reduction) degradation. Significant fractionation through biodegradation occurred exclusively due to the metabolic activity of the anaerobic degraders. We performed analytical and numerical reactive transport simulations of the different experimental phases which confirmed that both the effects of physical processes (diffusion and dispersion) and microbially mediated reactions have to be considered to match the observed isotopic fractionation behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es101179fDOI Listing

Publication Analysis

Top Keywords

transverse dispersion
12
isotopic fractionation
8
reactive transport
8
observed fractionation
8
steady state
8
physical processes
8
dispersion
5
fractionation
5
transverse
4
fractionation transverse
4

Similar Publications

The mechanical properties of metal-organic frameworks (MOFs) are of high fundamental and practical relevance. A particularly intriguing technique for determining anisotropic elastic tensors is Brillouin scattering, which so far has rarely been used for highly complex materials like MOFs. In the present contribution, we apply this technique to study a newly synthesized MOF-type material, referred to as GUT2.

View Article and Find Full Text PDF

This paper introduces a novel method for measuring the dielectric permittivity of materials within the microwave and millimeter wave frequency ranges. The proposed approach, classified as a guided wave transmission system, employs a periodic transmission line structure characterized by mirror/glide symmetry. The dielectric permittivity is deduced by measuring the transmission properties of such structure when presence of the dielectric material breaks the inherent symmetry of the structure and consequently introduce a stopband in propagation characteristic.

View Article and Find Full Text PDF

The current research aims to analyze the shape and structural features of the eggs of the lepidoptera species sp. (Lepidoptera, Nympalidae) and develop design solutions through the implementation of a novel strategy of biomimetic design. Scanning electron microscopy (SEM) analysis of the chorion reveals a medial zone that forms an arachnoid grid resembling a ribbed dome with convex longitudinal ribs and concave transverse ring members.

View Article and Find Full Text PDF

Charge-carrier compensation in topological semimetals amplifies the Nernst signal and simultaneously degrades the Seebeck coefficient. In this study, we report the simultaneous achievement of both a large Nernst signal and an unsaturating magneto-Seebeck coefficient in a topological nodal-line semimetal TaAs single crystal. The unique dual-high transverse and longitudinal thermopowers are attributed to multipocket synergy effects: the combination of a strong phonon-drag effect and the two overlapping highly dispersive conduction and valence bands with electron-hole compensation and high mobility, promising a large Nernst effect; the third Dirac band causes a large magneto-Seebeck effect.

View Article and Find Full Text PDF

This study investigates the effects of heat treatment, involving solubilization and aging, on the microstructure of AA2017-T451 aluminum alloy. Samples of 4 mm thick rolled plate of AA2017 underwent solution treatment at 500 °C for two different durations, namely 2 h and 6 h, followed by either water quenching (WQ) or air quenching (AQ). Subsequently, they were artificially aged (AA) at 175 °C for 8 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!