Employment and comparison of different Artificial Neural Networks for epilepsy diagnosis from EEG signals.

J Med Syst

Department of Electronic and Computer Education, Technical Education Faculty, Selcuk University, Konya, Turkey.

Published: February 2012

In this study, it has been intended to analyze Electroencephalography (EEG) signals by Wavelet Transform (WT) for diagnosis of epilepsy, to employ various Artificial Neural Networks (ANNs) for the signals' automatic classification. Furthermore, carrying out a performance comparison has been aimed. Three EEG signals have been decomposed into frequency sub bands by WT and the feature vectors have been extracted from these sub bands. In order to reduce the sizes of the extracted feature vectors, Principal Component Analysis (PCA) method has been applied when necessary and these feature vectors have been classified by five different ANNs as either epileptic or healthy. The performance evaluation has been carried out by conducting ROC analysis for the used ANN models that and their comparisons have also been included.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10916-010-9480-5DOI Listing

Publication Analysis

Top Keywords

eeg signals
12
feature vectors
12
artificial neural
8
neural networks
8
employment comparison
4
comparison artificial
4
networks epilepsy
4
epilepsy diagnosis
4
diagnosis eeg
4
signals study
4

Similar Publications

Motion Cognitive Decoding of Cross-Subject Motor Imagery Guided on Different Visual Stimulus Materials.

J Integr Neurosci

December 2024

Department of Computer Science and Engineering, Shaoxing University, 312000 Shaoxing, Zhejiang, China.

Background: Motor imagery (MI) plays an important role in brain-computer interfaces, especially in evoking event-related desynchronization and synchronization (ERD/S) rhythms in electroencephalogram (EEG) signals. However, the procedure for performing a MI task for a single subject is subjective, making it difficult to determine the actual situation of an individual's MI task and resulting in significant individual EEG response variations during motion cognitive decoding.

Methods: To explore this issue, we designed three visual stimuli (arrow, human, and robot), each of which was used to present three MI tasks (left arm, right arm, and feet), and evaluated differences in brain response in terms of ERD/S rhythms.

View Article and Find Full Text PDF

Study Objectives: Polysomnography (PSG) currently serves as the benchmark for evaluating sleep disorders. Its discomfort makes long-term monitoring unfeasible, leading to bias in sleep quality assessment. Hence, less invasive, cost-effective, and portable alternatives need to be explored.

View Article and Find Full Text PDF

Introduction: A fundamental property of the neocortex is its columnar organization in many species. Generally, neurons of the same column share stimulus preferences and have strong anatomical connections across layers. These features suggest that neurons within a column operate as one unified network.

View Article and Find Full Text PDF

Background: Mice play a crucial role in studying the mechanisms of general anesthesia. However, identifying reliable EEG markers for different depths of anesthesia induced by multifarious agents remains a significant challenge. Spindle activity, typically observed during NREM sleep, reflects synchronized thalamocortical activity and is characterized by a frequency range of 7-15 Hz and a duration of 0.

View Article and Find Full Text PDF

ESI-GAL: EEG source imaging-based trajectory estimation for grasp and lift task.

Comput Biol Med

December 2024

Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Bharti School of Telecommunication, Indian Institute of Technology Delhi, New Delhi 110016, India; Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi 110016, India. Electronic address:

Background: Electroencephalogram (EEG) signals-based motor kinematics prediction (MKP) has been an active area of research to develop Brain-computer interface (BCI) systems such as exosuits, prostheses, and rehabilitation devices. However, EEG source imaging (ESI) based kinematics prediction is sparsely explored in the literature.

Method: In this study, pre-movement EEG features are utilized to predict three-dimensional (3D) hand kinematics for the grasp-and-lift motor task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!