In brain cancer, a biopsy as an invasive procedure is needed in order to differentiate between malignant and benign brain tumor. However, in some cases, it is difficult or harmful to perform such a procedure, to the brain. The aim of this study is to investigate a new method in maximizing the probability of brain cancer type detection without actual biopsy procedure. The proposed method combines both image and statistical analysis for tumor type detection. It employed image filtration and segmentation of the target region of interest with MRI to assure an accurate statistical interpretation of the results. Statistical analysis was based on utilizing the mean, range, box plot, and testing of hypothesis techniques to reach acceptable and accurate results in differentiating between those two types. This method was performed, examined and compared on actual patients with brain tumors. The results showed that the proposed method was quite successful in distinguishing between malignant and benign brain tumor with 95% confident that the results are correct based on statistical testing of hypothesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10916-009-9382-6DOI Listing

Publication Analysis

Top Keywords

brain cancer
12
malignant benign
8
benign brain
8
brain tumor
8
type detection
8
proposed method
8
statistical analysis
8
testing hypothesis
8
brain
7
statistical
5

Similar Publications

Radiomic signatures of brain metastases on MRI: utility in predicting pathological subtypes of lung cancer.

Transl Cancer Res

December 2024

Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.

Background: The pathological sub-classification of lung cancer is crucial in diagnosis, treatment and prognosis for patients. Quick and timely identification of pathological subtypes from imaging examinations rather than histological tests could help guiding therapeutic strategies. The aim of the study is to construct a non-invasive radiomics-based model for predicting the subtypes of lung cancer on brain metastases (BMs) from multiple magnetic resonance imaging (MRI) sequences.

View Article and Find Full Text PDF

Genomic landscape of medulloblastoma subtypes in an Asian cohort.

Transl Cancer Res

December 2024

BGI Research, Chongqing, China.

Background: Medulloblastoma (MB) is a highly malignant childhood brain tumor. Previous research on the genetic underpinnings of MB subtypes has predominantly focused on European and American cohorts. Given the notable genetic differences between Asian and other populations, a subtype-specific study on an Asian cohort is essential to provide comprehensive insights into MB within this demographic.

View Article and Find Full Text PDF

Background: Within the realm of primary brain tumors, specifically glioblastoma (GBM), presents a notable obstacle due to their unfavorable prognosis and differing median survival rates contingent upon tumor grade and subtype. Despite a plethora of research connecting cardiotrophin-1 (CTF1) modifications to a range of illnesses, its correlation with glioma remains uncertain. This study investigated the clinical value of CTF1 in glioma and its potential as a biomarker of the disease.

View Article and Find Full Text PDF

Objectives: Nonsmall cell lung cancer (NSCLC) accounts for about 85% of all lung cancers. Asymmetric dimethylarginine (ADMA) is an emerging molecule that is highlighted in carcinogenesis and tumor progression in lung cancer. Since elevated concentrations of ADMA are observed in lung cancer patients, we aimed to explore its associations with inflammation markers and established prognostic indices.

View Article and Find Full Text PDF

Ischemic stroke is a sudden onset of neurological deficit resulting from a blockage in cerebral blood vessels, which can lead to brain tissue damage, chronic disability, and increased risk of mortality. Secretome from hypoxic mesenchymal stem cells (SH-MSC) is a potential therapy to improve neurological deficit by increasing the expression of vascular endothelial growth factor (VEGF) and reducing glial fibrillary acidic protein (GFAP). These effects can reduce the infarction area of ischemic stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!