Diabetes mellitus (DM) is a major independent risk factor for cardiovascular disease, but also leads to cardiomyopathy. However, the etiology of the cardiac disease is unknown. Therefore, the aim of this study was to identify molecular mechanisms underlying diabetic heart disease. High glucose treatment of isolated cardiac fibroblasts, macrophages and cardiomyocytes led to a sustained induction of HMGB1 on the RNA and protein level followed by increased NF-κB binding activity with consecutively sustained TNF-α and IL-6 expression. Short interference (si) RNA knock-down for HMGB1 and RAGE in vitro confirmed the importance of this axis in diabetes-driven chronic inflammation. In a murine model of post-myocardial infarction remodeling in type 1 diabetes, cardiac HMGB1 expression was significantly elevated both on RNA and protein level paralleled by increased expression of pro-inflammatory cytokines up to 10 weeks. HMGB1-specific blockage via box A treatment significantly reduced post-myocardial infarction remodeling and markers of tissue damage in vivo. The protective effects of box A indicated an involvement of the mitogen-activated protein-kinases jun N-terminal kinase and extracellular signal-regulated kinase 1/2, as well as the transcription factor nuclear factor-kappaB. Interestingly, remodeling and tissue damage were not affected by administration of box A in RAGE(-/-) mice. In conclusion, HMGB1 plays a major role in DM and post-I/R remodeling by binding to RAGE, resulting in activation of sustained pro-inflammatory pathways and enhanced myocardial injury. Therefore, blockage of HMGB1 might represent a therapeutic strategy to reduce post-ischemic remodeling in DM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00395-010-0114-3 | DOI Listing |
Drug Dev Res
February 2025
Graduate School, Fujian University of Traditional Chinese Medicine, Fuzhou City, People's Republic of China.
Naringenin has the potential to regulate ferroptosis and mitigate renal damage in diabetic nephropathy (DN). However, it remains unclear whether the naringenin's effects in DN are linked to its ability to regulate ferroptosis. This study investigated the potential anti-ferroptosis properties of naringenin in high glucose (HG)-induced renal tubular epithelial cell models.
View Article and Find Full Text PDFPurpose: Heart failure (HF) is a disease that leads to approximately 300,000 fatalities annually in Europe and 250,000 deaths each year in the United States. Type 2 Diabetes Mellitus (T2DM) is a significant risk factor for HF, and testing for N-terminal (NT)-pro hormone BNP (NT-proBNP) can aid in early detection of HF in T2DM patients. We therefore developed and validated the HFriskT2DM-HScore, an algorithm to predict the risk of HF in T2DM patients, so guiding NT-proBNP investigation in a primary care setting.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Biochemistry Department, College of Medicine, Tikrit University, Tikrit, Iraq.
Chronic kidney disease (CKD) is often complicated by diabetes, impacting various biochemical and immunological markers. This study aimed to investigate the relationship between irisin, apelin-13, and immunological markers IL-1α and IL-1β in diabetic patients with CKD. This cross-sectional study was conducted from January to June 2023 in a tertiary care hospital in Tikrit City, Iraq.
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga, University, Surabaya, Indonesia.
This study attempts to prove that the antioxidant effect of fucoxanthin nanoparticles can prevent streptozotocin-induced rat liver damage. Fucoxanthin nanoparticles are synthesized using the high-energy ball milling method. Dynamic Light Scattering (DLS) was then used to describe the sizes of the fucoxanthin nanoparticles.
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
School of Pharmacy, Shaoyang University, Shaoyang, Hunan, China.
Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases worldwide, with no cure at present. Vitamin D (VD) is a fat-soluble vitamin, which has been recognized as one of the major influencing factors of T2DM. However, the specific relationship between T2DM and VD remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!