Symmetry breaking and structure of a mixture of nematic liquid crystals and anisotropic nanoparticles.

Beilstein J Org Chem

University of Maribor, Faculty of Natural Sciences and Mathematics, Koroska cesta 160, 2000 Maribor, Slovenia.

Published: July 2010

Orientational ordering of a homogeneous mixture of uniaxial liquid crystalline (LC) molecules and magnetic nanoparticles (NPs) is studied using the Lebwohl-Lasher lattice model. We consider cases where NPs tend to be oriented perpendicularly to LC molecules due to elastic forces. We study domain-type configurations of ensembles, which are quenched from the isotropic phase. We show that for large enough concentrations of NPs the long range uniaxial nematic ordering is replaced by short range order exhibiting strong biaxiality. This suggests that the impact of NPs on orientational ordering of LCs for appropriate concentrations of NPs is reminiscent to the influence of quenched random fields which locally enforce a biaxial ordering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2919260PMC
http://dx.doi.org/10.3762/bjoc.6.74DOI Listing

Publication Analysis

Top Keywords

orientational ordering
8
concentrations nps
8
nps
5
symmetry breaking
4
breaking structure
4
structure mixture
4
mixture nematic
4
nematic liquid
4
liquid crystals
4
crystals anisotropic
4

Similar Publications

Many proteins form paralogous multimers-molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here, we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), an αβ heterotetramer that evolved from a homodimeric ancestor after a gene duplication.

View Article and Find Full Text PDF

The article explores personal values among older adults in relation to their "offspring status." Erikson's theory of psychosocial development and Schwartz's theory of human values suggest a positive relationship between having offspring and prosocial values. We tested this hypothesis by comparing older adults who have none, one, or two generations of descendants: childless (with no descendants), grandchildless (with adult children and no grandchildren), and grandparents.

View Article and Find Full Text PDF

3D disordered fibrous network structures (3D-DFNS), such as cytoskeletons, collagen matrices, and spider webs, exhibit remarkable material efficiency, lightweight properties, and mechanical adaptability. Despite their widespread in nature, the integration into engineered materials is limited by the lack of study on their complex architectures. This study addresses the challenge by investigating the structure-property relationships and stability of biomimetic 3D-DFNS using large datasets generated through procedural modeling, coarse-grained molecular dynamics simulations, and machine learning.

View Article and Find Full Text PDF

Microscopic insights into the effects of interfacial dynamics and nanoconfinement on characteristics of calcium carbonate clusters within two-dimensional nanochannels.

Phys Chem Chem Phys

January 2025

College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.

Herein, the interfacial effects on calcium carbonate clustering within two-dimensional (2D) graphene nanochannels were systematically investigated using molecular dynamics simulations. The distribution characteristics of the ions at the interface can be attributed to the ordered water layers within the 2D nanochannels. The orientation of CO is approximately perpendicular to the interface, which can be attributed to hydrogen bonding and its association with Ca at the interface region.

View Article and Find Full Text PDF

Colonies of the social bacterium Myxococcus xanthus go through a morphological transition from a thin colony of cells to three-dimensional droplet-like fruiting bodies as a strategy to survive starvation. The biological pathways that control the decision to form a fruiting body have been studied extensively. However, the mechanical events that trigger the creation of multiple cell layers and give rise to droplet formation remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!