Atypical hemolytic uremic syndrome (aHUS) is associated with complement alternative pathway defects in over half the cases. Point mutations that affect complement surface regulation are common in factor H (CFH); however, sometimes individuals have null mutations in heterozygosis. The latter are difficult to identify, although a consistently low plasma factor H (fH) concentration is suggestive; definitive proof requires demonstration that the mutant sequence is not expressed in vitro. Here, novel reagents and assays that distinguish and individually quantify the common factor H-Y402H polymorphic variants were used to identify alleles of the CFH gene, resulting in low or null expression of full-length fH and also normal or increased expression of the alternative splice product factor H-like-1 (FHL-1). Our assay identified three Y402H heterozygotes with low or absent fH-H402 but normal or increased FHL-1-H402 levels in a cohort of affected patients. Novel mutations explained the null phenotype in two cases, which was confirmed by family studies in one. In the third case, family studies showed that a known mutation was present on the Y allele. The cause of reduced expression of the H allele was not found, although the data suggested altered splicing. In each family, inheritance of low expression or null alleles for fH strongly associated with aHUS. Thus, our assays provide a rapid means to identify fH expression defects without resorting to gene sequencing or expression analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3252682PMC
http://dx.doi.org/10.1038/ki.2010.275DOI Listing

Publication Analysis

Top Keywords

null alleles
8
alleles associated
8
atypical hemolytic
8
hemolytic uremic
8
uremic syndrome
8
common factor
8
normal increased
8
family studies
8
expression
6
factor
5

Similar Publications

Enhancing Clinical Applications by Evaluation of Sensitivity and Specificity in Whole Exome Sequencing.

Int J Mol Sci

December 2024

Bioinformatics Analysis Team, Research Core Center, Research Institute, National Cancer Center, Goyang 10408, Gyeonggi-do, Republic of Korea.

The cost-effectiveness of whole exome sequencing (WES) remains controversial due to variant call variability, necessitating sensitivity and specificity evaluation. WES was performed by three companies (AA, BB, and CC) using reference standards composed of DNA from hydatidiform mole and individual blood at various ratios. Sensitivity was assessed by the detection rate of null-homozygote (N-H) alleles at expected variant allelic fractions, while false positive (FP) errors were counted for unexpected alleles.

View Article and Find Full Text PDF

Background: In the context of global change, coral reefs and their associated biodiversity are under threat. Several conservation strategies using population genetics have been explored to protect them. However, some components of this ecosystem are understudied, such as hydrozoans, an important class of benthic organisms worldwide.

View Article and Find Full Text PDF

Hoxa5 plays numerous roles in development, but its downstream molecular effects are mostly unknown. We applied bulk RNA-seq assays to characterize the transcriptional impact of the loss of Hoxa5 gene function in seven different biological contexts, including developing respiratory and musculoskeletal tissues that present phenotypes in Hoxa5 mouse mutants. This global analysis revealed few common transcriptional changes, suggesting that HOXA5 acts mainly via the regulation of context-specific effectors.

View Article and Find Full Text PDF

TaDL interacts with TaB3 and TaNF-YB1 to synergistically regulate the starch synthesis and grain quality in bread wheat.

J Integr Plant Biol

December 2024

Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.

Starch biosynthesis is a critical factor in wheat (Triticum aestivum L.) quality and yield. However, the full scope of its regulation is not fully understood.

View Article and Find Full Text PDF

Multiplex panels of SNP markers based on single-base primer extension in the west Pacific pen shell Atrina lischkeana (Clessin, 1891).

Mol Biol Rep

December 2024

Production Engineering Division, Momoshima Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1760 Momoshima, Onomichi, Hiroshima, 722-0061, Japan.

Background: As part of stock enhancement programs for marine fishery species, the stocking of hatchery-produced seedlings into sea areas has been implemented worldwide. DNA markers are vital for responsible stock enhancement practices that aim to conserve the genetic diversity of recipient wild populations. We report novel single-nucleotide polymorphism (SNP) markers and multiplex SNP panels developed for the west Pacific pen shell Atrina lischkeana (Clessin, 1891), a large bivalve that is expected to be a subject of stock enhancement activity as the natural resource has dwindled, especially in Japan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!