TIM2 gene deletion results in susceptibility to cisplatin-induced kidney toxicity.

Toxicol Sci

Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.

Published: November 2010

T-cell Immunoglobulin and Mucin domain 2 (TIM2) belongs to the receptor family of cell surface molecules expressed on kidney, liver, and T cells. Previous studies have revealed that TIM2-deficient mice (TIM2(-/-)) are more susceptible to the Th2-mediated immune response in an airway inflammation model. Here, we investigated the phenotypic response of TIM2(-/-) mice to cisplatin-induced kidney toxicity. A lethality study in male BALB/c wild-type (TIM2(+/+)) and TIM2(-/-) mice, administered with 20 mg/kg cisplatin ip, resulted in 80% mortality of TIM2(-/-) mice as compared with 30% mortality in the TIM2(+/+) group by day 5. The TIM2(-/-) mice showed approximately fivefold higher injury as estimated by blood urea nitrogen and serum creatinine at 48 h that was confirmed by significantly increased proximal tubular damage assessed histologically (H & E staining). A significantly higher expression of Th2-associated cytokines, TNF-α, IL-1β, IL-6, and TGFβ, with a significant reduction of Th1-associated cytokines, RANTES and MCP-1, by 72 h was observed in the TIM2(-/-) mice as compared with TIM2(+/+) mice. A higher baseline protein expression of caspase-3 (approximately twofold) coupled with an early onset of p53 protein activation by 48 h resulted in an increased apoptosis by 48-72 h in TIM2(-/-) compared with TIM2(+/+). In conclusion, the increased expression of the proinflammatory and proapoptotic genes, with a higher number of apoptotic cells, and a pronounced increase in injury and mortality of the TIM2-deficient mice collectively suggest a protective role of TIM2 in cisplatin-induced nephrotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955214PMC
http://dx.doi.org/10.1093/toxsci/kfq240DOI Listing

Publication Analysis

Top Keywords

tim2-/- mice
20
cisplatin-induced kidney
8
kidney toxicity
8
mice
8
tim2-deficient mice
8
mice compared
8
compared tim2+/+
8
tim2-/-
7
tim2 gene
4
gene deletion
4

Similar Publications

TIM2 modulates retinal iron levels and is involved in blood-retinal barrier breakdown.

Exp Eye Res

January 2021

CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. Universidade Técnica, 1300-477, Lisbon, Portugal; CBATEG - Center for Animal Biotechnology and Gene Therapy, Autonomous University of Barcelona, C/ de La Vall Morona, 08193, Bellaterra (Cerdanyola Del Vallès), Spain; Department of Animal Health and Anatomy, Faculty of Veterinary, Autonomous University of Barcelona, Travessera Del Turons, 08193, Bellaterra (Cerdanyola Del Vallès), Spain. Electronic address:

Careful control of iron availability in the retina is central to maintenance of iron homeostasis, as its imbalance is associated with oxidative stress and the progression of several retinopathies. Ferritin, known for its role in iron storage and detoxification, has also been proposed as an iron-transporter protein, through its binding to Scara5 and TIM2 membrane receptors. In this study, the presence and iron-related functions of TIM2 in the mouse retina were investigated.

View Article and Find Full Text PDF

Human Semaphorin-4A drives Th2 responses by binding to receptor ILT-4.

Nat Commun

February 2018

Department of Immunobiology, Medicine and Dermatology, Cancer Immunology Program at Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06519, USA.

Semaphorin-4A (Sema4A) has been implicated in the co-stimulation of T cells and drives Th1 immune responses by binding to the receptor T-cell immunoglobulin and mucin domain protein 2 (Tim-2) in mice. Here we show that human, but not murine, Sema4A is preferentially expressed on antigen-presenting cells, and co-stimulates CD4 T-cell proliferation and drives Th2 responses. By employing two independent cloning strategies, we demonstrate that Immunoglobulin-like transcript 4 (ILT-4) is a receptor for human SEMA4A (hSEMA4A) on activated CD4 T cells.

View Article and Find Full Text PDF

Deficiency of trophic factors relating to the survival of oligodendrocytes, combined with direct interactions with the immune system, are favored paradigms that are increasingly implicated in demyelinating diseases of the central nervous system. We and others have previously shown that Sema4A and H-ferritin interact through the T-cell immunoglobulin and mucin domain (Tim-2) receptor in mice. H-ferritin has been identified as the iron delivery protein for oligodendrocytes, whereas Sema4A causes a direct cytotoxic effect.

View Article and Find Full Text PDF

T-cell immunoglobulin and mucin domain (TIM)-2 is expressed on activated B cells. Here, we provide evidence that murine TIM-2 is a target of ADAM10-mediated ectodomain shedding, resulting in the generation of a soluble form of TIM-2. We identified ADAM10 but not ADAM17 as the major sheddase of TIM-2, as shown by pharmacological ADAM10 inhibition and with ADAM10-deficient and ADAM17-deficient murine embryonic fibroblasts.

View Article and Find Full Text PDF

Neuroimmune semaphorin 4A as a drug and drug target for asthma.

Int Immunopharmacol

November 2013

Center for Vascular and Inflammatory Diseases, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.

Neuroimmune semaphorin 4A (Sema4A) has been shown to play an important costimulatory role in T cell activation and regulation of Th1-mediated diseases such as multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), and experimental autoimmune myocarditis (EAM). Sema4A has three functional receptors, Tim-2 expressed on CD4+ T cells, Th2 cells in particular, and Plexin B1 and D1 predominantly expressed on epithelial and endothelial cells, correspondingly. We recently showed that Sema4A has a complex expression pattern in lung tissue in a mouse model of asthma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!