A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A CESA from Griffithsia monilis (Rhodophyta, Florideophyceae) has a family 48 carbohydrate-binding module. | LitMetric

Cellulose synthases form rosette terminal complexes in the plasma membranes of Streptophyta and various linear terminal complexes in other taxa. The sequence of a putative CESA from Griffithsia monilis (Rhodophyta, Floridiophyceae) was deduced using a cloning strategy involving degenerate primers, a cDNA library screen, and 5' and 3' rapid amplification of cDNA ends (RACE). RACE identified two alternative transcriptional starts and four alternative polyadenylation sites. The first translation start codon provided an open reading frame of 2610 bp encoding 870 amino acids and was PCR amplified without introns from genomic DNA. Southern hybridization indicated one strongly hybridizing gene with possible weakly related genes or pseudogenes. Amino acid sequence analysis identified a family 48 carbohydrate-binding module (CBM) upstream of the protein's first predicted transmembrane domain. There are broad similarities in predicted 3D structures of the family 48 modules from CESA, from several glycogen- and starch-binding enzymes, and from protein kinases, but there are substitutions at some residues thought to be involved in ligand binding. The module in G. monilis CESA will be on the cytoplasmic face of the plasma membrane so that it could potentially bind either low molecular weight ligands or starch which is cytosolic rather than inside membrane-bound plastids in red algae. Possible reasons why red algal CESAs have evolved family 48 modules perhaps as part of a system to regulate cellulose synthase activity in relation to cellular carbohydrate status are briefly discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955755PMC
http://dx.doi.org/10.1093/jxb/erq254DOI Listing

Publication Analysis

Top Keywords

cesa griffithsia
8
griffithsia monilis
8
monilis rhodophyta
8
family carbohydrate-binding
8
carbohydrate-binding module
8
terminal complexes
8
family modules
8
cesa
4
rhodophyta florideophyceae
4
family
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!