Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vascular endothelial growth factor is a potent pro-angiogenic growth factor which is also known to alter tumor microenvironment by inhibiting dendritic cell differentiation and promoting accumulation of myeloid-derived suppressor cells. In the present study, we analyzed the modifications induced by intratumoral expression of sFLT-1, a soluble VEGF receptor, in a rat metastatic colon carcinoma model. We generated colon cancer cell lines stably expressing sFLT-1 or a mock construct. Human umbilical vein endothelial cells cultured with conditioned medium from sFLT-1-expressing tumor cells exhibit a significantly decreased survival, demonstrating the functionality of the secreted sFLT-1. Invivo, sFLT-1 expression induced a 30% decrease in microvessel density in 15-day old experimental liver metastasis from colon carcinoma. Tumor growth was inhibited by 63% and 52% in left and right liver lobes respectively within 25days. In these tumors, sFLT-1 expression was associated with a decreased myeloid cell infiltration and a modification in the expression of several cytokines/chemokines. Altogether, these results suggest that VEGF trapping by sFLT-1 intratumoral expression results in reduced vascularization, tumor growth inhibition and modification of immune tumor microenvironment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canlet.2010.07.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!