Background: Repeated blocks of genome sequence have been shown to be associated with genetic diversity and disease risk in humans, and with phenotypic diversity in model organisms and domestic animals. Reliable tests are desirable to determine whether individuals are carriers of copy number variants associated with disease risk in humans and livestock, or associated with economically important traits in livestock. In some cases, copy number variants affect the phenotype through a dosage effect but in other cases, allele combinations have non-additive effects. In the latter cases, it has been difficult to develop tests because assays typically return an estimate of the sum of the copy number counts on the maternally and paternally inherited chromosome segments, and this sum does not uniquely determine the allele configuration. In this study, we show that there is an old solution to this new problem: segregation analysis, which has been used for many years to infer alleles in pedigreed populations.
Methods: Segregation analysis was used to estimate copy number alleles from assay data on simulated half-sib sheep populations. Copy number variation at the Agouti locus, known to be responsible for the recessive self-colour black phenotype, was used as a model for the simulation and an appropriate penetrance function was derived. The precision with which carriers and non-carriers of the undesirable single copy allele could be identified, was used to evaluate the method for various family sizes, assay strategies and assay accuracies.
Results: Using relationship data and segregation analysis, the probabilities of carrying the copy number alleles responsible for black or white fleece were estimated with much greater precision than by analyzing assay results for animals individually. The proportion of lambs correctly identified as non-carriers of the undesirable allele increased from 7% when the lambs were analysed alone to 80% when the lambs were analysed in half-sib families.
Conclusions: When a quantitative assay is used to estimate copy number alleles, segregation analysis of related individuals can greatly improve the precision of the estimates. Existing software for segregation analysis would require little if any change to accommodate the penetrance function for copy number assay data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928190 | PMC |
http://dx.doi.org/10.1186/1297-9686-42-34 | DOI Listing |
Neuromolecular Med
January 2025
Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh.
Interleukin 6 (IL6) is an inflammatory biomarker linked to central and peripheral nervous system diseases. This study combined bioinformatics and statistical meta-analysis to explore potential associations between IL6 gene variants (rs1800795, rs1800796, and rs1800797) and neurological disorders (NDs) and brain cancer. The meta-analysis was conducted on substantial case-control datasets and revealed a significant correlation between IL6 SNPs (rs1800795 and rs1800796) with overall NDs (p-value < 0.
View Article and Find Full Text PDFJ Biochem
January 2025
Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
Glutamate-rich WD40 repeat containing 1 (GRWD1) is a novel oncogene/oncoprotein that downregulates the p53 tumor suppressor protein through several mechanisms. One important mechanism involves binding of GRWD1 to RPL11, which competitively inhibits the RPL11-MDM2 interaction and releases RPL11-mediated suppression of MDM2 ubiquitin ligase activity toward p53. Here, we mined the TCGA (The Cancer Genome Atlas) database to gain in-depth insight into the clinical relevance of GRWD1.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Dermatology and Allergy, University Hospital of Munich, Ludwig-Maximilian-University, Munich, Germany.
Background: Cancer immunotherapy has transformed metastatic cancer treatment, yet challenges persist regarding therapeutic efficacy. RECQL4, a RecQ-like helicase, plays a central role in DNA replication and repair as part of the DNA damage response, a pathway implicated in enhancing efficacy of immune checkpoint inhibitor (ICI) therapies. However, its role in patient response to ICI remains unclear.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
January 2025
Marmara University School of Medicine, Department of Pediatric Endocrinology, 34854, Istanbul, Turkey.
Context: Duplications occurring upstream of the SOX9 gene have been identified in a limited subset of patients with 46,XX testicular/ovotesticular differences/disorders of sex development (DSD). However, comprehensive understanding regarding their clinical presentation and diagnosis is limited.
Objective: To gain further insight into the diagnosis of a large cohort of 46,XX individuals with duplications upstream of SOX9.
Neurol Genet
February 2025
Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
Background And Objectives: Neonatal encephalopathy (NE) is characterized by an abnormal level of consciousness with or without seizures in the neonatal period. It affects 1-6/1,000 live term newborns. We applied genome sequencing (GS) in term newborns with NE to investigate the underlying genetic causes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!