Morphologic characterization of cell neighborhoods in neoplastic and preneoplastic epithelium.

Anal Quant Cytol Histol

Oral Pathology Unit, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, St. Chad's Queensway, Birmingham B4 6NN, UK.

Published: February 2010

Objective: To explore tissue organization based on the geometry of cell neighborhoods in histologic preparations.

Study Design: Local complexity of solid tissues was measured in images of discrete tissue compartments. Exclusive areas associated with cell nuclei (v-cells) were computed using a watershed transform of the nuclear staining intensity. Mathematical morphology was used to define neighborhood membership, distances and identify complete nested neighborhoods. Neighborhood complexity was estimated as the scaling of the number of neighbors relative to reference v-cells.

Results: The methodology applied to hematoxylin-eosin-stained sections from normal, dysplastic and neoplastic oral epithelium revealed that the scaling exponent, over a finite range of neighborhood levels, is nonunique and fractional. While scaling values overlapped across classes, the average was marginally higher in neoplastic than in dysplastic and normal epithelia. The best classificatory power of the exponent was 58% correct classification into 3 diagnostic classes (11 levels) and 83% between dysplastic and neoplastic classes (13 levels).

Conclusion: V-cell architecture retains features of the original tissue classes and demonstrates an increase in tissue disorder in neoplasia. This methodology seems suitable for extracting information from tissues where identification of cell boundaries (and therefore segmentation into individual cells) is unfeasible.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cell neighborhoods
8
dysplastic neoplastic
8
morphologic characterization
4
cell
4
characterization cell
4
neoplastic
4
neighborhoods neoplastic
4
neoplastic preneoplastic
4
preneoplastic epithelium
4
epithelium objective
4

Similar Publications

: Precise Proteomics Technology for Mapping Receptor Protein Neighborhoods at the Cancer Cell Surface.

Cancers (Basel)

January 2025

Department of Biomedical Engineering, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA.

Cell surface receptors are pivotal to cancer cell transformation, disease progression, metastasis, early detection, targeted therapy, drug responses, and clinical outcomes. Since they coordinate complex signaling communication networks in the tumor microenvironment, mapping the physical interaction partners of cell surface receptors in vivo is vital for understanding their roles, functional states, and suitability as therapeutic targets. Yet traditional methods like immunoprecipitation and affinity purification-mass spectrometry often fail to detect key but weak or transient receptor-protein interactions.

View Article and Find Full Text PDF

Tumor-infiltrating lymphocytes are considered clinically beneficial in breast cancer, but the significance of natural killer (NK) cells is less well characterized. As increasing evidence has demonstrated that the spatial organization of immune cells in tumor microenvironments is a significant parameter for impacting disease progression as well as therapeutic responses, an improved understanding of tumor-infiltrating NK cells and their location within tumor contextures is needed to improve the design of effective NK cell-based therapies. In this study, we developed a multiplex immunohistochemistry (mIHC) antibody panel designed to quantitatively interrogate leukocyte lineages, focusing on NK cells and their phenotypes, in two independent breast cancer patient cohorts (n = 26 and n = 30).

View Article and Find Full Text PDF

Poisoned in their homes - Red blood cell abnormalities in lead-exposed residents of a Pakistani Industrial Zone.

Environ Monit Assess

January 2025

Cancer Biology Lab, Institute of Microbiology and Molecular Genetics, University of the Punjab, Quid-E-Azam Campus, PO Box No. 54590, Lahore, Pakistan.

The present study investigated the clinical and hematological effects of chronic lead exposure in the population residing in Shadi Pura, a small industrial zone in Lahore, Pakistan. A cross-sectional analysis of 149 participants recruited through health camps was conducted to explore the hematological manifestations of environmental lead exposure, focusing on various red blood cell (RBC) indices and morphology. Moreover, the study examined the differences in the impact of lead exposure on RBC indices and morphology between men, women, and children.

View Article and Find Full Text PDF

Roles of Cellular Neighborhoods in Hepatocellular Carcinoma Pathogenesis.

Annu Rev Pathol

January 2025

Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.

The development of hepatocellular carcinoma (HCC) involves an intricate interplay among various cell types within the liver. Unraveling the orchestration of these cells, particularly in the context of various etiologies, may hold the key to deciphering the underlying mechanisms of this complex disease. The advancement of single-cell and spatial technologies has revolutionized our ability to determine cellular neighborhoods and understand their crucial roles in disease pathogenesis.

View Article and Find Full Text PDF

Polycaprolactone for Hard Tissue Regeneration: Scaffold Design and In Vivo Implications.

Bioengineering (Basel)

January 2025

Tissue Bioengineering Laboratory, Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Circuito Exterior s/n, University City, Coyoacán, Mexico City 04510, Mexico.

In the last thirty years, tissue engineering (TI) has emerged as an alternative method to regenerate tissues and organs and restore their function by implanting specific lineage cells, growth factors, or biomolecules functionalizing a matrix scaffold. Recently, several pathologies have led to bone loss or damage, such as malformations, bone resorption associated with benign or malignant tumors, periodontal disease, traumas, and others in which a discontinuity in tissue integrity is observed. Bone tissue is characterized by different stiffness, mechanical traction, and compression resistance as a function of the different compartments, which can influence susceptibility to injury or destruction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!