Molecular dynamics simulations of nano-therapeutics as a final product and of all intermediates in the process of generating a multi-functional nano-therapeutic based on a poly(amidoamine) (PAMAM) dendrimer were performed along with chemical analyses of each of them. The actual structures of the dendrimers were predicted, based on potentiometric titration, gel permeation chromatography, and NMR. The chemical analyses determined the numbers of functional molecules, based on the actual structure of the dendrimer. Molecular dynamics simulations calculated the configurations of the intermediates and the radial distributions of functional molecules, based on their numbers. This interactive process between the simulation results and the chemical analyses provided a further strategy to design the next reaction steps and to gain insight into the products at each chemical reaction step.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917823 | PMC |
http://dx.doi.org/10.1166/jctn.2009.1006 | DOI Listing |
Sci Rep
January 2025
Foot and Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
1,4-Azaborine-based arenes are promising electroluminescent emitters with thermally activated delayed fluorescence (TADF), offering narrow emission spectra and high quantum yields due to a multi-resonance (MR) effect. However, their practical application is constrained by their limited operational stability. This study investigates the degradation mechanism of MR-TADF molecules.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, 08854, USA; Center for Structured Organic Particulate Systems (C-SOPS), Cranbury, NJ, 08512, USA.
This study used Raman and near-infrared (NIR) spectroscopy to monitor small real-time changes in powder blends and tablets in low-dose pharmaceutical formulations. The research aims to enhance process analytical technology (PAT) in pharmaceutical manufacturing, ensuring high-quality and uniform products with applications to produce drugs with narrow therapeutic indices (NTI). The study utilizes Raman and NIR spatially resolved spectroscopy (SRS) techniques to monitor a moderate cohesive material's active pharmaceutical ingredient (API) concentrations during manufacturing.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical Engineering, School of Engineering and Digital Science, Nazarbayev University, Astana 010000, Kazakhstan.
The escalating global energy demand necessitates enhanced oil recovery methods, particularly offshore. Biological nanotechnology offers sustainable, environment-friendly, and cost-effective alternatives to synthetic chemicals. This study explored the synthesis of polysaccharide-based nanoparticles (PNPs) from Corchorus olitorius leaves using a weak acid-assisted ultrasonic method and their application as nanocomposites for oil recovery.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China. Electronic address:
Theaflavins, oxidation product of tea polyphenols, have demonstrated significant inhibitory effects on α-glucosidase, which is beneficial in alleviating hyperglycemia. This study found that the inhibition of four monomers of theaflavins on α-glucosidase was related to the presence of the galloyl moiety (GM), with IC values ranging from TFDG (0.26 mg/mL) < TF3'G (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!