The tiny brains of insects presumably impose significant computational limitations on algorithms controlling their behavior. Nevertheless, they perform fast and sophisticated visual maneuvers. This includes tracking features composed of second-order motion, in which the feature is defined by higher-order image statistics, but not simple correlations in luminance. Flies can track the true direction of even theta motions, in which the first-order (luminance) motion is directed opposite the second-order moving feature. We exploited this paradoxical feature tracking response to dissect the particular image properties that flies use to track moving objects. We find that theta motion detection is not simply a result of steering toward any spatially restricted flicker. Rather, our results show that fly high-order feature tracking responses can be broken down into positional and velocity components - in other words, the responses can be modeled as a superposition of two independent steering efforts. We isolate these elements to show that each has differing influence on phase and amplitude of steering responses, and together they explain the time course of second-order motion tracking responses during flight. These observations are relevant to natural scenes, where moving features can be much more complex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2918350 | PMC |
http://dx.doi.org/10.3389/fnbeh.2010.00035 | DOI Listing |
Neuropsychologia
January 2025
Queensland Brain Institute, The University of Queensland, Australia; School of Psychology, The University of Queensland, Australia; CIFAR, Canada.
Endogenous visuo-spatial attention is under the control of a fronto-parietal network of brain regions. One key node in this network, the intra-parietal sulcus (IPS), plays a crucial role in maintaining endogenous attention, but little is known about its ongoing physiology and network dynamics during different attentional states. Here, we investigated the reactivity of the left IPS in response to brain stimulation under different states of selective attention.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, 1 Ben-Gurion Blvd, Beer-Sheva, Israel.
During flight, spatial disorientation (SD) commonly occurs when a pilot's perception conflicts with the aircraft's actual motion, attitude, or position. A prevalent form of SD is the somatogyral illusion, which is elicited by constant speed rotation and causes a false perception of motion in the opposite direction when the rotation ceases. This research aimed to investigate changes in brain activity that occur when experiencing a somatogyral illusion by simulating conditions closely mimicking flight conditions to gain insight into how to better manage this illusion during flight.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA.
Evaluation of mechanisms of action of EEG neurofeedback (EEG-nf) using simultaneous fMRI is highly desirable to ensure its effective application for clinical rehabilitation and therapy. Counterbalancing training runs with active neurofeedback and sham (neuro)feedback for each participant is a promising approach to demonstrate specificity of training effects to the active neurofeedback. We report the first study in which EEG-nf procedure is both evaluated using simultaneous fMRI and controlled via the counterbalanced active-sham study design.
View Article and Find Full Text PDFDev Psychobiol
January 2025
Developmental Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
Object permanence allows infants to interact successfully with objects in the environment. What happens in the human infant brain when objects move in and out of sight? This study used high-density electroencephalography (hdEEG) to record induced oscillatory brain activities in 29 locomotor infants before, during, and after occlusion of a moving object traveling at different speeds. Temporal spectral evolution (TSE) showed that before and after the occlusion event, event-related synchronized (ERS) brain activity was observed, whereas event-related desynchronized (ERD) activity was detected when the car was hidden behind the occluder.
View Article and Find Full Text PDFCogn Neurodyn
October 2024
Exercise Science and Neuroscience Unit, Department Sport and Health, Paderborn University, Warburger Straße 100, 33100 Paderborn, Germany.
Unlabelled: Football is one of the most played sports in the world and kicking with adequate accuracy increases the likelihood of winning a competition. Although studies with different target-directed movements underline the role of distinctive cortical activity on superior accuracy, little is known about cortical dynamics associated with kicking. Mobile electroencephalography is a popular tool to investigate cortical modulations during movement, however, inherent and artefact-related pitfalls may obscure the reliability of functional sources and their activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!