High-mobility group protein box-1 (HMGB1) has recently been recognized as a novel candidate in a specific upstream pathway promoting inflammation after brain ischemia. However, its downstream pathway and underlying mechanism have yet to be elucidated. The HMGB1 level in the acute cerebral infarct (ACI) group was significantly increased compared with that of control group, and correlated with the severity of neurologic impairment of ACI patients. Further, recombinant human HMGB1 (rhHMGB1) had no effect on microglia derived from mice lacking the Toll-like receptor 4 (TLR4(-/-)). Intracerebroventricular injection of rhHMGB1 in TLR4(+/+) mice cause significantly more injury after cerebral ischemia-reperfusion than control group. But, TLR4(-/-) mice administered with rhHMGB1 showed moderate impairment after ischemia-reperfusion than TLR4(+/+) mice. To determine the potential downstream signaling of HMGB1/TLR4 in cerebral ischemic injury, we used the ischemic-reperfusion model with Toll/interleukin-1 receptor domain-containing adaptor-inducing interferon-β knockout mice (TRIF(-/-)) and evaluated the activity and expression of TRIF pathway-related kinases. The results suggest that the TRIF pathway is not likely to be involved in TLR4-mediated ischemia brain injury. Finally, we found that TLR4 expressed by immigrant macrophages was involved in the development of ischemic brain damage. These results suggest that HMBG1 mediates ischemia-reperfusion injury by TRIF-adaptor independent Toll-like receptor 4 signaling. The TLR4 expressed by immigrant macrophages may be involved in the development of ischemic brain damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049514 | PMC |
http://dx.doi.org/10.1038/jcbfm.2010.129 | DOI Listing |
J Agric Food Chem
January 2025
Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
Background Severe acute pancreatitis (SAP) manifests as a critical state marked by acute abdominal symptoms, often associated with intestinal barrier dysfunction, exacerbating SAP retroactively. Ganoderic acid A (GAA) demonstrates anti-inflammatory properties in various inflammatory disorders. Nonetheless, its potential therapeutic impact on SAP and the underlying mechanisms remain unexplored.
View Article and Find Full Text PDFMater Today Bio
February 2025
Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
Sepsis is a serious and life-threatening condition, which can lead to organ failure and death clinically. Abnormally increased cell-free DNA (cfDNA) and inflammatory cytokines are involved in the development and progression of sepsis. Thus, cfDNA clearance and down-regulation of inflammatory factors are essential for the effective treatment of sepsis.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan, 44000.
Objective: The rise of drug-resistant bacteria, viruses, and fungi has prompted the search for new drugs without cross-resistance to current treatments. As a result, the aim of this research was to synthesize various types of dihydropyrimidinones heterocyclic compounds and screened them for their antibiotic properties.
Methodology: Newly synthesized dihydropyrimidinone derivatives were characterized spectroscopically using proton NMR (HNMR), and FT-IR.
J Diabetes Res
January 2025
Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
Shenlian (SL) decoction, a renowned traditional Chinese formula for diabetes mellitus, has also been employed to treat intestinal disorders. Previous studies have demonstrated the efficacy of SL decoction in regulating blood glucose and intestinal bacteria. Nevertheless, further analysis is required to elucidate the mechanistic link between SL decoction-mediated improvement of intestinal function and treatment of Type 2 diabetes mellitus (T2DM).
View Article and Find Full Text PDFACS Nano
January 2025
Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium.
The iron-regulated surface determinant protein B (IsdB) has recently been shown to bind to toll-like receptor 4 (TLR4), thereby inducing a strong inflammatory response in innate immune cells. Currently, two unsolved questions are (i) What is the molecular mechanism of the IsdB-TLR4 interaction? and (ii) Does it also play a role in nonimmune systems? Here, we use single-molecule experiments to demonstrate that IsdB binds TLR4 with both weak and extremely strong forces and that the mechanostability of the molecular complex is dramatically increased by physical stress, sustaining forces up to 2000 pN, at a loading rate of 10 pN/s. We also show that TLR4 binding by IsdB mediates time-dependent bacterial adhesion to endothelial cells, pointing to the role of this bond in cell invasion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!