The major goal of this study is to investigate and quantitatively describe the nature of the relationship between the characteristics of chronic exposure to ionizing radiation and specific patterns of hematopoiesis reduction. The study is based on about 3,200 hemograms taken for inhabitants of the Techa riverside villages over the years 1951-1956, i.e., the period characterized by a gradual decrease in dose rates. The mean cumulative red bone marrow dose was 333.6 + or - 4.6 mGy. The approach to statistical analyses involved both empirical methods and modeling (generalized linear models and logistic regressions). The results of the analyses highlighted a gradual increase in the frequency of cytopenias with dose rate. The impact of exposure on hematopoiesis reduction patterns was found to be more substantial than that of age and health status. Dose rates resulting in a two-fold increase in the frequency of cytopenias have been estimated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/HP.0b013e3181c2f315 | DOI Listing |
Nature
January 2025
Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Cis-regulatory elements (CREs) control gene expression and are dynamic in their structure and function, reflecting changes in the composition of diverse effector proteins over time. However, methods for measuring the organization of effector proteins at CREs across the genome are limited, hampering efforts to connect CRE structure to their function in cell fate and disease. Here we developed PRINT, a computational method that identifies footprints of DNA-protein interactions from bulk and single-cell chromatin accessibility data across multiple scales of protein size.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China. Electronic address:
Fine particulate matter (PM) is one of the most concerning air pollutants, with emerging evidence indicating that it can negatively impact embryonic development and lead to adverse birth outcomes. Hematopoiesis is a critical process essential for the survival and normal development of the embryo, consisting of three temporally overlapping stages and involving multiple hematopoietic loci, including the yolk sac and fetal liver. Therefore, we hypothesized that abnormal embryonic hematopoietic development can significantly influence developmental outcomes.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Lindsley F. Kimball Research Institute, New York Blood Center, New York, United States of America.
The bone marrow (BM) niche is critical in regulating hematopoiesis, and sexual dimorphism and its underlying mechanism in BM niche and its impact on hematopoiesis are not well understood. We show that male mice exhibited a higher abundance of leptin-receptor-expressing mesenchymal stromal cells (LepR-MSCs) compared to female mice. Sex-mismatched co-culture and BM transplantation showed that the male BM niche provided superior support for in vitro colony formation and in vivo hematopoietic engraftment.
View Article and Find Full Text PDFDevelopment
January 2025
Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis.
View Article and Find Full Text PDFJ Adv Pract Oncol
May 2024
Levine Cancer Institute, Atrium Health, Charlotte, North Carolina.
Myelofibrosis is a myeloproliferative neoplasm characterized by the buildup of fibrous scar tissue in the bone marrow occurring secondary to the secretion of inflammatory cytokines, leading to cytopenias, dysfunctional hematopoiesis, and constitutional symptoms. One of the pathologic mechanisms that underlies myelofibrosis is aberrant activation of the Janus kinase (JAK)-STAT pathway. Targeting the JAK-STAT pathway via JAK inhibition can lead to significant improvements in spleen volume reduction and symptom improvement in intermediate- and high-risk myelofibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!