Objective: The pathogenesis of diabetic nephropathy is complex and involves activation of multiple pathways leading to kidney damage. An important role for altered lipid metabolism via sterol regulatory element binding proteins (SREBPs) has been recently recognized in diabetic kidney disease. Our previous studies have shown that the farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor, modulates renal SREBP-1 expression. The purpose of the present study was then to determine if FXR deficiency accelerates type 1 diabetic nephropathy in part by further stimulation of SREBPs and related pathways, and conversely, if a selective FXR agonist can prevent the development of type 1 diabetic nephropathy.
Research Design And Methods: Insulin deficiency and hyperglycemia were induced with streptozotocin (STZ) in C57BL/6 FXR KO mice. Progress of renal injury was compared with nephropathy-resistant wild-type C57BL/6 mice given STZ. DBA/2J mice with STZ-induced hyperglycemia were treated with the selective FXR agonist INT-747 for 12 weeks. To accelerate disease progression, all mice were placed on the Western diet after hyperglycemia development.
Results: The present study demonstrates accelerated renal injury in diabetic FXR KO mice. In contrast, treatment with the FXR agonist INT-747 improves renal injury by decreasing proteinuria, glomerulosclerosis, and tubulointerstitial fibrosis, and modulating renal lipid metabolism, macrophage infiltration, and renal expression of SREBPs, profibrotic growth factors, and oxidative stress enzymes in the diabetic DBA/2J strain.
Conclusions: Our findings indicate a critical role for FXR in the development of diabetic nephropathy and show that FXR activation prevents nephropathy in type 1 diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2963551 | PMC |
http://dx.doi.org/10.2337/db10-0019 | DOI Listing |
PLoS One
January 2025
Department of Nephrology, Pu'er People's Hospital, Pu'er, Yunnan, China.
Diabetic nephropathy (DN) is the single largest cause of end-stage renal disease (ESRD). Inflammation reaction mediated by NLRP3 inflammasome and Nrf2-related oxidative stress have been considered to play a very important role in the progress of diabetic nephropathy (DN). Effective drugs for the treatment of diabetic nephropathy still need to be explored.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, Kempegowda Institute of Medical Sciences, Bengaluru, IND.
Background Type 2 diabetes mellitus (T2DM) is associated with a high risk of developing microvascular complications such as diabetic nephropathy, diabetic neuropathy (DN), and diabetic retinopathy (DR), leading to significant morbidity. Early detection of these complications is crucial for improving patient outcomes. Neutrophil-lymphocyte ratio (NLR) and urine albumin-creatinine ratio (UACR) show promise as cost-effective and accessible biomarkers for the early detection of microvascular complications in T2DM.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Long noncoding RNAs may function as competitive endogenous RNAs by sponging microRNAs, thereby contributing to the progression of diabetic nephropathy. In this study, a potential diabetic nephropathy-related long noncoding-microRNA-mRNA axis, Gm4419-miR-455-3p-, was predicted using bioinformatics methods. To verify the role of the Gm4419-miR-455-3p- axis in diabetic nephropathy, an high glucose-induced mesangial cell model was established.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Nephrology, Affiliated Bao'an Hospital of Shenzhen, The Second School of Clinical Medicine, Southern Medical University, Shenzhen, China.
Objectives: The study will evaluate the effectiveness and safety of finerenone in patients diagnosed with diabetic kidney disease (DKD).
Methods: Various databases including PubMed, Sinomed, Web of Science, Embase, Clinical Trials, and Cochrane Library were systematically reviewed for pertinent studies published from the beginning to February 2024.This meta-analysis utilized RevMan 5.
Zhejiang Da Xue Xue Bao Yi Xue Ban
December 2024
Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
Diabetic nephropathy is a common microvascular complication of diabetes mellitus and one of the main causes of death in patients with diabetes mellitus. Ferroptosis is a newly discovered iron-dependent regulated cell death, which may contribute to the pathogenesis and development of diabetic nephropathy. Adenosine monophosphate-activated protein kinase (AMPK)-mediated ferroptosis-related signaling pathways can slow down the progression of diabetic nephropathy, but excessive activation of AMPK signaling pathway may induce cells to undergo autophagic death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!