A reliable and practical CYP3A induction assay with cryopreserved human hepatocytes in a 96-well format was developed. Various 96-well plates with different basement membrane were evaluated using prototypical inducers, rifampicin, phenytoin, and carbamazepine. Thin-layer (TL) Matrigel was found to yield the highest basal and induced levels of CYP3A activity as determined by testosterone 6β-hydroxylation. Concentration-dependent CYP3A induction of rifampicin was reproducible with the EC(50) values of 0.36 ± 0.28 μM from four batches of human hepatocytes using the 96-well plate with TL Matrigel. The rank order of induction potency for nine inducers or noninducers at a concentration of 10 μM were well comparable among the multiple donors, by expressing the results as percentage of change compared with the positive control, 10 μM rifampicin. Cotreatment of avasimibe or efavirenz with 10 μM rifampicin was found to reduce CYP3A activities induced by rifampicin at a lower rate than treatment with rifampicin alone, whereas treatment with phenobarbital and carbamazepine had no effect. From a comparison of induced CYP3A activities and gene expression levels, there were compounds that would cause induction of CYP3A4 mRNA but not activity, presumably due to their inhibitory effect on CYP3A activity. The cotreatment assay of test compound with rifampicin allows us to exclude the false-negative results caused by the cytotoxicity and/or the mechanism-based inactivation, when the drug candidate's ability for CYP3A induction is evaluating the enzyme activity. This 96-well plate assay, which is robust, reproducible, and convenient, has demonstrated the paramount applicability to the early drug discovery stage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/dmd.109.028613 | DOI Listing |
Int J Mol Sci
December 2024
Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, 85028 Potenza, Italy.
Oxidative phosphorylation and glycolysis are the main ATP-generating pathways in cell metabolism. The balance between these two pathways is frequently altered to carry out cell-specific activities in response to stimuli involving activation, proliferation, or differentiation. Despite being a useful tool for researching metabolic profiles in real time in relatively small numbers of cancer cells, the main Agilent Seahorse XF Pro Analyzer (Agilent Technologies, Santa Clara, CA, USA) guideline is currently not fully detailed in the distinction between suspensions vs.
View Article and Find Full Text PDFBMC Biotechnol
January 2025
Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany.
Background: In the fermentation industry, the demand to replace expensive complex media components is increasing for alternative nutrient sources derived from waste or side streams, such as corn steep liquor (CSL). However, the use of CSL is associated with common problems of side products, such as batch-to-batch variations and compositional inconsistencies. In this study, to detect batch-to-batch variations in CSL for Ogataea polymorpha cultivations, a "fingerprinting" system was developed by employing the Respiration Activity Monitoring System designed for shake flasks (RAMOS) and 96-well microtiter plates (µTOM).
View Article and Find Full Text PDFVet Microbiol
January 2025
Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Poland. Electronic address:
Avian pathogenic Escherichia coli (APEC) is a principal etiologic agent of avian colibacillosis, responsible for significant economic losses in the poultry industry due to high mortality and disease treatment with antibiotics. APEC and its ability to form biofilms on food and processing surfaces contributes to its persistence within farms. Bacteriophages are promising antibacterial agents for combating APEC.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
High-throughput experimentation (HTE) has accelerated academic and industrial chemical research in reaction development and drug discovery and has been broadly applied in many domains of organic chemistry. However, application of HTE in electrosynthesis-an enabling tool for chemical synthesis-has been limited by a dearth of suitable standardized reactors. Here we report the development of microelectronic devices, which are produced using standard nanofabrication techniques, to enable wireless electrosynthesis on the microlitre scale.
View Article and Find Full Text PDFToxicol Rep
June 2025
Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
High-throughput screening (HTS) three-dimensional (3D) tumor models are a promising approach for cancer drug discovery, as they more accurately replicate cell behavior than two-dimensional (2D) models. However, assessing and comparing current 3D models for drug efficacy remains essential, given the significant influence of cellular conditions on treatment response. To develop mimicking 3D models, we evaluated two HTS 3D models established in 96-well plates with 3D polycaprolactone (PCL) scaffolds fabricated using two distinct methods, resulting in scaffolds with either homogenous or non-homogenous fiber networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!