An important aspect of wound healing is the recruitment of neutrophils to the site of infection or tissue injury. Lumican, an extracellular matrix component belonging to the small leucine rich proteoglycan (SLRP) family, is one of the major keratan sulfate proteoglycans (KSPGs) within the corneal stroma. Increasing evidence indicates that lumican can serve as a regulatory molecule for several cellular processes, including cell proliferation and migration. In the present study, we addressed the role of lumican in the process of extravasation of polymorphonuclear leukocytes (PMNs) during the early inflammatory phase present in the healing of the corneal epithelium following debridement. We used Lum(-/-) mice and a novel transgenic mouse, Lum(-/-),Kera-Lum, which expresses lumican only in the corneal stroma, to assess the role of lumican in PMN extravasation into injured corneas. Our results showed that PMNs did not readily invade injured corneas of Lum(-/-) mice and this defect was rescued by the expression of lumican in the corneas of Lum(-/-),Kera-Lum mice. The presence of lumican in situ facilitates PMN infiltration into the peritoneal cavity in casein-induced inflammation. Our findings are consistent with the notion that in addition to regulating the collagen fibril architecture, lumican acts to aid neutrophil recruitment and invasion following corneal damage and inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923572PMC
http://dx.doi.org/10.1242/jcs.068221DOI Listing

Publication Analysis

Top Keywords

lumican
9
wound healing
8
corneal stroma
8
role lumican
8
lum-/- mice
8
injured corneas
8
corneal
5
lumican required
4
required neutrophil
4
neutrophil extravasation
4

Similar Publications

Purpose: The vocal folds (VFs) are among the most mechanically active connective tissues, vibrating between 80 and 250 hz during speech. Overall VF function is determined by the composition and structure of their extracellular matrix (ECM). During tissue maturation, the VFs remodel from a monolayer of collagen fibers to a tri-layered structure, affecting tissue biomechanics.

View Article and Find Full Text PDF

Embryoid body-based differentiation of human-induced pluripotent stem cells into cells with a corneal stromal keratocyte phenotype.

BMJ Open Ophthalmol

November 2024

Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China

Objective: The transparency of the cornea is determined by the extracellular matrix, which is secreted by corneal stromal keratocytes (CSKs). Human-induced pluripotent stem cell (hiPSC)-derived keratocytes (hiPSC-CSKs) can be used in cell-based therapy for treating corneal blindness. Our goal was to develop an effective small molecule-based technique for differentiating hiPSCs into keratocytes.

View Article and Find Full Text PDF

The Human Cornea: Unraveling Its Structural, Chemical, and Biochemical Complexities.

Chem Biodivers

November 2024

LV Prasad Eye Institute, Kallam Anji Reddy Campus, Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, Hyderabad, Telangana, India.

The cornea, the transparent part of the anterior eye, is vital for light refraction and vision. This review examines the intricate chemical and biochemical interactions essential for maintaining corneal transparency and highlights significant advancements in corneal biology. The cornea comprises five layers: the epithelium, Bowman's layer, stroma, Descemet's membrane, and endothelium, each contributing uniquely to its structure and function.

View Article and Find Full Text PDF
Article Synopsis
  • The study developed two types of artificial human tissue substitutes: bilayered full-thickness stromal-epithelial substitutes (SESS) and epithelial substitutes (ESS), to investigate the maturation of the extracellular matrix in a controlled setting.
  • Results showed that SESS epithelium demonstrated higher differentiation and extracellular matrix production compared to ESS, which had more proliferative cells but less matrix development.
  • The findings highlight the importance of epithelial-stromal interactions in tissue engineering and suggest that both SESS and ESS can be effective models for studying metabolic pathways and tissue development.
View Article and Find Full Text PDF

Background: Human artificial corneas (HAC) generated by tissue engineering recently demonstrated clinical usefulness in the management of complex corneal diseases. However, the biological mechanisms associated to their regenerative potential need to be elucidated.

Methods: In the present work, we generated HAC using nanostructured fibrin-agarose biomaterials with cultured corneal epithelial and stromal cells, and we compared the structure and histochemical and immunohistochemical profiles of HAC with control native corneas (CTR-C) and limbus (CTR-L) to determine the level of biomimicry of the HAC with these two native organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!