Today's spectral reflection prediction models are able to predict the reflection spectra of printed color images with an accuracy as high as the reproduction variability allows. However, to calibrate such models, special uniform calibration patches need to be printed. These calibration patches use space and have to be removed from the final product. The present contribution shows how to deduce the ink spreading behavior of the color halftones from spectral reflectances acquired within printed color images. Image tiles of a color as uniform as possible are selected within the printed images. The ink spreading behavior is fitted by relying on the spectral reflectances of the selected image tiles. A relevance metric specifies the impact of each ink spreading curve on the selected image tiles. These relevance metrics are used to constrain the corresponding ink spreading curves. Experiments performed on an inkjet printer demonstrate that the new constraint-based calibration of the spectral reflection prediction model performs well when predicting color halftones significantly different from the selected image tiles. For some prints, the proposed image based model calibration is more accurate than a classical calibration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2010.2063037 | DOI Listing |
ACS Macro Lett
January 2025
Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
As three-dimensional (3D) printing has emerged as a new manufacturing technology, the demand for high-performance 3D printable materials has increased to ensure broad applicability in various load-bearing structures. In particular, the thixotropic properties of materials, which allow them to flow under applied external forces but resist flowing otherwise, have been reported to enable rapid and high-resolution printing owing to their self-standing and easily processable characteristics. In this context, graphene nanosheets exhibit unique π-π stacking interactions between neighboring sheets, likely imparting self-standing capability to low-viscosity inks.
View Article and Find Full Text PDFSci Rep
December 2024
School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
In recent years, inkjet digital printing technology has become a popular research area. This paper focuses on the spreading behavior of single ink drops on coated paper in digital inkjet printing. It explores the impact of ink drop spreading on monochromatic spectral reflectance, providing new insights for the theoretical development of spectral prediction models.
View Article and Find Full Text PDFBiomater Adv
December 2024
Biomedical Engineering, The University of Melbourne, VIC 3010, Australia; The Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, VIC 3010, Australia. Electronic address:
Sacrificial templating offers the ability to create interconnected pores within 3D printed filaments and to control pore morphology. Beta-tricalcium phosphate (TCP) bone tissue engineering (BTE) scaffolds were fabricated with multiscale porosity: (i) macropores from direct ink writing (DIW, a material extrusion 3D printing technique), (ii) micropores from oil templating, and (iii) smaller micropores from partial sintering. The hierarchically porous scaffolds possessed a total porosity of 58-70 %, comprising 54-63 % interconnected open pores.
View Article and Find Full Text PDFImplement Sci Commun
November 2024
Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK.
Background: Neovascular age-related macular degeneration (nAMD) is one of the largest single-disease contributors to hospital outpatient appointments. Challenges in finding the clinical capacity to meet this demand can lead to sight-threatening delays in the macular services that provide treatment. Clinical artificial intelligence (AI) technologies pose one opportunity to rebalance demand and capacity in macular services.
View Article and Find Full Text PDFLangmuir
October 2024
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
The impact of droplets on a cold surface is ubiquitous in nature and various industrial applications, ranging from the icing of supercooled droplets on aircraft to the solidification of ink droplets in 3D printing. However, our understanding of the impact dynamics of droplets of complex fluids on cold surfaces is still very limited. Here, we experimentally study the spreading and frozen patterns of viscoelastic polymer droplets falling onto a subcooled substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!