In order to prepare targeted drug carriers, previously a biotin group has been attached by our group to the end of Pluronic F87/poly(lactic acid) and Pluronic P85/poly(lactic acid) block co-polymers to obtain B-F87-PLA and B-P85-PLA, respectively. In this paper, the active targeting properties of B-F87-PLA and B-P85-PLA nanoparticles in vitro were investigated through a three-step biotin-avidin interaction by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) tests and fluorescence microscopy (FM). Two kinds of human ovarian cancer cells (OVCAR-3 and SKOV-3) and paclitaxel were chosen for the cytotoxicity tests. CA-125 antigen is over-expressed on OVCAR-3 cells but not on SKOV-3 cells. The loading and release behavior of paclitaxel loaded in B-Pluronic-PLA nanoparticles were also studied. Paclitaxel loaded in both B-F87-PLA and B-P85-PLA nanoparticles shows an initial rapid release followed by a slow release period. Compared with SKOV-3 cells, the cytotoxicity results implied that paclitaxel-loaded B-Pluronic-PLA nanoparticles were delivered more effectively to OVCAR-3 cells due to the specific interaction between the biotin groups on the surface of B-Pluronic-PLA nanoparticles and the avidin/biotinylated MAb X306/CA-125 antigen complexes on the surface of OVCAR-3 cells. The active targeting properties of B-F87-PLA nanoparticles were further confirmed by FM.

Download full-text PDF

Source
http://dx.doi.org/10.1163/092050610X519444DOI Listing

Publication Analysis

Top Keywords

active targeting
12
b-f87-pla b-p85-pla
12
ovcar-3 cells
12
b-pluronic-pla nanoparticles
12
nanoparticles vitro
8
three-step biotin-avidin
8
biotin-avidin interaction
8
targeting properties
8
properties b-f87-pla
8
b-p85-pla nanoparticles
8

Similar Publications

Drug resistance of cancers remains a major obstacle due to limited therapeutics. Lysosome targeting is an effective method for overcoming drug resistance in cancer cells. St-N (ent-13-hydroxy-15-kaurene-19-acid N-methylpiperazine ethyl ester) is a novel alkaline stevioside derivative with an amine group.

View Article and Find Full Text PDF

The increasing utilization of deep learning models in drug repositioning has proven to be highly efficient and effective. In this study, we employed an integrated deep-learning model followed by traditional drug screening approach to screen a library of FDA-approved drugs, aiming to identify novel inhibitors targeting the TNF-α converting enzyme (TACE). TACE, also known as ADAM17, plays a crucial role in the inflammatory response by converting pro-TNF-α to its active soluble form and cleaving other inflammatory mediators, making it a promising target for therapeutic intervention in diseases such as rheumatoid arthritis.

View Article and Find Full Text PDF

Optimizing dual energy X-ray image enhancement using a novel hybrid fusion method.

J Xray Sci Technol

December 2024

School of Electrical and Information Engineering, Tianjin University, Nankai District, Tianjin, China.

Background: Airport security is still a main concern for assuring passenger safety and stopping illegal activity. Dual-energy X-ray Imaging (DEXI) is one of the most important technologies for detecting hidden items in passenger luggage. However, noise in DEXI images, arising from various sources such as electronic interference and fluctuations in X-ray intensity, can compromise the effectiveness of object identification.

View Article and Find Full Text PDF

Self-propelled micro/nanomotors (MNMs) represent a groundbreaking advancement in precision drug delivery, offering potential solutions to persistent challenges such as systemic toxicity, limited bioavailability, and nonspecific distribution. By transforming various energy sources into mechanical motion, MNMs are able to autonomously navigate through complex physiological environments, facilitating targeted delivery of therapeutic agents to previously inaccessible regions. However, to achieve efficient in vivo drug delivery, biomedical MNMs must demonstrate their ability to overcome crucial physiological barriers encompassing mucosal surfaces, blood flow dynamics, vascular endothelium, and cellular membrane.

View Article and Find Full Text PDF

Purpose: After peripheral nerve injury (PNI), prolonged denervation of the target muscle prevents adequate reinnervation even if the nerve is repaired. The aim of this work is to analyze the effect of intramuscular Platelet-Rich Plasma (PRP) in a denervated muscle due to PNI.Materials and.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!