Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Despite recent cell-engineering advances, treatment and repair of cartilage remains challenging. Although stem cell transplantation therapy using mesenchymal stem cells (MSCs) is considered a prominent strategy, the major problem of limited proliferative capacity of autologous cells has been unsolved. Recently, an induced pluripotent stem (iPS) cell line was suggested as an alternative way to cure various human diseases due to their potential proliferating infinitely while possessing the capacity to form all types of cells. However, the method to induce lineage-restricted differentiation has not been well examined or established. Here, we suggest a simple method to induce mesenchymal progenitors possessing chondrogenic property from mouse iPS cells. The MSC-like cells produced in our study expressed some MSC markers, and could also differentiate to osteoblast and adipocyte. The present study demonstrates the property of iPS cells as an alternative candidate for treatment of articular disorders, and suggests an effective approach for preparing chondrocyte from iPS cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/cell.2009.0086 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!