Photolysis of alpha-diazo-N-methoxy-N-methyl (Weinreb) beta-ketoamides derived from enantiomerically pure (EP) alpha-amino acids affords the corresponding EP beta-lactams via an intramolecular Wolff rearrangement. The photochemistry is promoted with either standard UV irradiation or through the use of a 100 W compact fluorescent light; the latter affords a safe and environmentally friendly alternative to standard photolysis conditions. A continuous-flow photochemical reactor made from inexpensive laboratory equipment reduced reaction times and was amenable to scale-up. The diastereoselectivity (cis or trans) of the product beta-lactams has been shown to vary from modest to nearly complete. An extremely facile, atom-economical method for the epimerization of the product mixture to the trans isomer, which is generally highly crystalline, has been developed. Evidence for C3 epimerization of Weinreb amide structures via a nonbasic, purely thermal route is presented. Subsequent transformations of both the Weinreb amide at C3 (beta-lactam numbering) and the amino acid side chain at C4 are well-tolerated, allowing for a versatile approach to diverse beta-lactam structures. The technology is showcased in the synthesis of a common intermediate used toward several carbapenem-derived structures starting from unfunctionalized aspartic acid.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2924779 | PMC |
http://dx.doi.org/10.1021/ja1050023 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.
Precisely controlling quantum states is relevant in next-generation quantum computing, encryption, and sensing. Chiral organic chromophores host unique light-matter interactions, which allow them to manipulate the quantized circular polarization of photons. Axially chiral organic scaffolds, such as helicenes or twisted acenes, are powerful motifs in chiral light manipulation.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
Chiral discrimination is an indispensable tool that has pivotal importance in the assignment of absolute configuration and determination of enantiomeric excess in chiral compounds. A series of enantiomerically pure -1,2-diaminocyclohexane (-DACH)-derived benzamides were first synthesized by simple chemical steps, and 14 variated derivatives have been assessed as NMR chiral solvating agents (CSAs) for discrimination of the signals of mandelic acid (MA) in H NMR analysis. The highly efficient chiral recognition of CSA on different substrates, including MAs, carboxylic acids, amino acid derivatives, and phosphoric acids (32 examples), was expanded via H, F, and P NMR spectroscopy.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China.
Mimicking the superstructures and properties of spherical biological encapsulants such as viral capsids and ferritin offers viable pathways to understand their chiral assemblies and functional roles in living systems. However, stereospecific assembly of artificial polyhedra with mechanical properties and guest-binding attributes akin to biological encapsulants remains a formidable challenge. Here we report the stereospecific assembly of dynamic supramolecular snub cubes from 12 helical macrocycles, which are held together by 144 weak C-H hydrogen bonds.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Calle Paris s/n y Praga, Loja 110107, Ecuador.
This study presents the first chemical and enantioselective analyses of essential oils (EOs) derived from the leaves of two endemic species, Cuatrec. and (Kunth) Cass., from Loja, Ecuador.
View Article and Find Full Text PDFNanoscale
January 2025
CBMN, CNRS, UMR 5248, University of Bordeaux, 33600 Pessac, France.
Cast films of racemic helicene derivatives adsorbed onto the surface of nanometric silica helices with controlled handedness exhibited distinct CD signals, whereas no CD signal was observed in the absence of silica nanohelices. These CD signals originate from the helical supramolecular assemblies formed by the racemic mixture of helicenes, with no evidence of enantiospecific adsorption. Interestingly, when enantiomerically pure forms of these helicenes were drop-cast onto the silica helices, different CD spectra were observed depending on the combination of the helicenes' handedness with that of the silica nanohelices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!