Silica-titania hollow nanoparticles (HNPs) with uniform diameters of 25, 50, 75, 100, and 125 nm were fabricated by dissolution and redeposition method in order to evaluate size dependent cellular response. Surface-modified HNPs with cationic, anionic, and neutral functional group were prepared by silane treatment. We systematically investigated cellular internalization, toxicity, and innate immune response of HNPs in human breast cancer (SK-BR-3) and mouse alveolar macrophage (J774A.1) cells. Size- and surface functionality-dependent cellular uptake of HNPs was investigated by fluorescence labeling (fluorescein isothiocyanate), inductively coupled plasma-emission spectroscopy, and ultrastructural resolution using transmission electron microscopy. Viability, reactive oxygen species, and apoptosis/necrosis of HNP-treated J774A.1 revealed the size-dependent phenomenon. Innate immune response of HNP-treated macrophages was measured by three cytokines such as interleukin-1, interleukin-6, and tumor necrosis factor α. Among the HNPs of different sizes, 50-nm HNPs demonstrated the highest toxic influence on macrophages. Among the HNPs with surface functionalities, cationic HNPs demonstrated the most toxic effect on J774A.1 and the highest uptake efficiency. The toxicity results of HNP-treated macrophages were consistent with the cellular internalization efficiency. These findings provide size- and surface functionality-dependent nanotoxicity and uptake of HNPs, and lead to HNPs for bioapplications such as drug delivery and imaging probe.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn100561eDOI Listing

Publication Analysis

Top Keywords

innate immune
12
immune response
12
hnps
10
cellular uptake
8
silica-titania hollow
8
hollow nanoparticles
8
cellular internalization
8
size- surface
8
surface functionality-dependent
8
uptake hnps
8

Similar Publications

Although antiretroviral therapy (ART) has dramatically improved the outlook of the HIV/AIDS pandemic, people living with HIV (PLWH) on suppressive therapy are still at higher risk for a range of comorbidities including cardiovascular disease (CVD) and HIV-associated neurocognitive disorders (HAND), among others. Chronic inflammation and immune activation are thought to be an underlying cause of these comorbidities. Many of the factors thought to drive chronic inflammation and immune activation in HIV overlap with factors known to induce trained immunity.

View Article and Find Full Text PDF

Tuberculosis (TB) is the leading cause of death from a single infectious agent. The burden is highest in some low- and middle-income countries. One-quarter of the world's population is estimated to have been infected with TB, which is the seedbed for progressing from TB infection to the deadly and contagious disease itself.

View Article and Find Full Text PDF

Sepsis is defined as a dysfunctional, life-threatening response to infection leading to multiorgan dysfunction and failure. During the past decade, studies have highlighted the relationship between sepsis and aging. However, the role of aging-related mechanisms in the progression and prognosis of sepsis remains unclear.

View Article and Find Full Text PDF

Ability of short-chain fatty acids to reduce inflammation and attract leucocytes to the inflamed skin of gilthead seabream (Sparus aurata L.).

Sci Rep

December 2024

Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain.

The aim of the study was to investigate the potential preventive use of short-chain fatty acids (SCFAs) to modulate inflammatory responses in gilthead seabream (Sparus aurata) skin. Initially, in vitro experiments were conducted to evaluate the effects of various concentrations of butyric acid, acetic acid and propionic acid, as well as their combination, on the cytotoxicity and cell viability of three different cell lines. The results determined the safe concentration of SCFAs, which was then used for an in vivo study.

View Article and Find Full Text PDF

The cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) signaling pathway is considered an essential pattern recognition and effector pathway in the natural immune system and is mainly responsible for recognizing DNA molecules present in the cytoplasm and activating downstream signaling pathways to generate type I interferons (IFN-I) and other inflammatory factors. STING, a crucial junction protein in the innate immune system, exerts an essential role in host resistance to external pathogen invasion. The DNA introduced by pathogens or tumors is recognized by the cytoplasmic nucleic acid receptor cGAS, and a second messenger, cGAMP, is generated using intracellular guanosine triphosphate (GTP) and adenosine triphosphate (ATP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!