Well-understand the organic carbon status in the Yellow River delta is the most important for studying the biogeochemical processes of the muddy-sandy coastal wetland and ecological restoration. The spatial distribution characteristics and its impact factors of organic carbon in the plant-soil systems of new-born tidal flat wetland in the Yellow River estuary were studied. The results showed that the difference of plant organic carbon content in different plant communities were not obvious, however significant difference of the plant organic carbon density was observed. Moreover, the M-shaped spatial distribution of the plant organic carbon density, which was similar to the plant biomass, was found in the study. The organic carbon contents in top soils were varied from 0.75 to 8.35 g x kg(-1), which was much lower than that in the typical freshwater marsh wetlands ecosystem. The spatial distribution trend of soil organic carbon density was similar to the soil organic carbon. The correlation analysis showed that soil organic carbon density was negatively correlated with pH, and positively correlated with TN, C/N and salinity. However, the correlations of plant organic carbon density with the soil organic carbon density, TN, C/N, pH and salinity were not significant.
Download full-text PDF |
Source |
---|
Environ Sci Technol
January 2025
College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
Interactions between manganese dioxides (MnO) and dissolved organic matter (DOM) have long been the subject of scientific inquiry. However, the effect of MnO crystallinity on the DOM fate remains unclear. Herein, we comprehensively investigate the adsorption, protection, and mineralization of DOM by MnO with various crystallinities (order of crystallinity: γ-30 < γ-90 < γ-120).
View Article and Find Full Text PDFMonatsh Chem
December 2023
Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria.
Unlabelled: In recent years, sugar alcohols have gained significant attention as organic phase change materials (PCMs) for thermal energy storage due to their comparably high thermal storage densities up to 350 J/g. In a computational study, outstandingly high values of up to ~ 450-500 J/g have been postulated for specific higher-carbon sugar alcohols. These optimized structures feature an even number of carbon atoms in the backbone and a stereochemical configuration in which all hydroxyl groups are in an 1,3--relationship, as found in the natural hexitol d-mannitol.
View Article and Find Full Text PDFChem Sci
December 2024
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QR UK
The reaction chemistry of an unprecedented 'inorganic cumulene' - featuring a five-atom BNBNB chain - towards C[double bond, length as m-dash]O (and related) multiple bonds is disclosed. In marked contrast to related all-carbon systems, the intrinsic polarity of the BNBNB chain (featuring electron-rich nitrogen and electron-deficient boron centres) enables metathesis chemistry with electrophilic heteroallenes such as CO and with organic carbonyl compounds. Transfer of the borylimide unit to [CO], [CS], [PP{(NDippCH)}] and [C(H)Ph] moieties generates (boryl)N[double bond, length as m-dash]C[double bond, length as m-dash]X systems (X = O, S, PP{(NDippCH)}, C(H)Ph), driven thermodynamically by B-O bond formation.
View Article and Find Full Text PDFTurk J Chem
November 2024
School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, P.R. China.
The development of ultraviolet (UV) shielding materials is of great importance to protect human health and prevent the degradation of organic matter. However, the synthesis of highly efficient UV shielding polymer nanocomposites is currently limited by the agglomeration of inorganic anti-UV nanoparticles (NPs) within the polymer matrix and the limited absorption spectrum of UV shielding agents. In this study, highly effective manganese doped carbon quantum dots@halloysite nanotube composites (Mn-CDs@HNTs/PAS) were successfully synthesized by loading manganese-doped carbon quantum dots (Mn-CDs) into UV shielding effective halloysite nanotubes (HNTs) via the solvothermal method, followed by polymerization modification (PAS).
View Article and Find Full Text PDFSmall Methods
January 2025
School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
Alluaudite-type NaFe(SO) (NFS) with high theoretical energy density is regarded as the promising cathode of sodium-ion batteries (SIBs), while practical rate and cyclic performances are still hindered by intrinsic poor conductivity. Here, a facile method is developed, collaborating high-boiling organic solvents assisted colloidal synthesis (HOS-CS) with sintering for tailoring NaFe(SO) nanocrystals decorated by conductive carbon network toward high-rate-capability cathode of SIBs. Impressively, the as-prepared NaFe(SO)@MC provides 60.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!