Formulation and in vitro characterization of Eudragit® L100 and Eudragit® L100-PLGA nanoparticles containing diclofenac sodium.

AAPS PharmSciTech

Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, 25240, Erzurum, Turkey.

Published: September 2010

The aim of this study was to formulate and characterize Eudragit® L100 and Eudragit® L100-poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing diclofenac sodium. Diclofenac generates severe adverse effects with risks of toxicity. Thus, nanoparticles were prepared to reduce these drawbacks in the present study. These nanoparticles were evaluated for surface morphology, particle size and size distribution, percentage drug entrapment, and in vitro drug release in pH 6.8. The prepared nanoparticles were almost spherical in shape, as determined by atomic force microscopy. The nanoparticles with varied size (241-274 nm) and 25.8-62% of entrapment efficiency were obtained. The nanoparticles formulations produced the release profiles with an initial burst effect in which diclofenac sodium release ranged between 38% and 47% within 4 h. The extent of drug release from Eudragit® L100 nanoparticles was up to 92% at 12 h. However, Eudragit®/PLGA nanoparticles showed an initial burst release followed by a slower sustained release. The cumulative release at 72 h was 56%, 69%, and 81% for Eudragit®/PLGA (20:80), Eudragit®/PLGA (30:70) and Eudragit®/PLGA (50:50) nanoparticles, respectively. The release profiles and encapsulation efficiencies depended on the amount of Eudragit in the blend. These data demonstrated the efficacy of these nanoparticles in sustaining the diclofenac sodium release profile.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2974120PMC
http://dx.doi.org/10.1208/s12249-010-9489-6DOI Listing

Publication Analysis

Top Keywords

diclofenac sodium
16
eudragit® l100
12
nanoparticles
11
release
9
l100 eudragit®
8
nanoparticles diclofenac
8
drug release
8
release profiles
8
initial burst
8
sodium release
8

Similar Publications

Clinical Presentations and Characteristics of NSAIDs Hypersensitivity in a Tertiary Care Hospital in Indonesia: A Case Series.

Int Med Case Rep J

January 2025

Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, 40132, Indonesia.

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely administered in all age groups due to their effectiveness in reducing fever, relieving pain, and reducing inflammation. However, they have also been identified as the second most common cause of drug-induced hypersensitivity reactions, after beta-lactam antibiotics. Adverse reactions to NSAIDs can range from expected pharmacological side effects such as gastritis to severe allergies, including anaphylaxis.

View Article and Find Full Text PDF

The presence of pharmaceuticals in aquatic ecosystems and their impact on humans and the environment are growing concerns in environmental health. This study aimed to evaluate the potential reproductive effects of diclofenac, ibuprofen, and aspirin on dissociated ovarian and testicular cells from Arabian Sea bream, Acanthopagrus arabicus. The cells were exposed to varying concentrations of the pharmaceuticals for 48 h.

View Article and Find Full Text PDF

Pharmaceuticals and per- and polyfluoroalkyl substances (PFAS) are persistent organic micropollutants (OMPs) posing environmental and health risks due to their bioaccumulative nature and potential toxicity. These OMPs spread to the environment due to the extensive use in today's society. Conventional wastewater treatment plants (WWTPs) are not designed to effectively remove these contaminants, making WWTPs an important pathway, especially for pharmaceuticals, to the aquatic environment.

View Article and Find Full Text PDF

The biotransformation of drugs by enzymes from the human microbiome can produce active or inactive products, impacting the bioactivity and function of these drugs inside the human host. However, understanding the biotransformation reactions of drug molecules catalyzed by bacterial enzymes in human microbiota is still limited. Hence, to characterize drug utilization capabilities across all the microbial phyla inside the human gut, we have used a knowledge-based approach to develop HgutMgene-Miner software which predicts xenobiotic metabolizing enzymes (XMEs) through genome mining.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!