Objective: Previous studies suggest that tumor cells might be the progenitor for tumor vasculature. Whether vascular tube formation from transdifferentiation of human glioma stem/progenitor cells (hGSPCs) contribute to angiogenesis of gliomas remain largely uncertain.
Methods: hGSPCs were isolated from thirteen surgical specimens of gliomas and cultured in medium favored for stem cell growth. In vitro transdifferentiation of hGSPCs was performed under hypoxia. Expression of vascular endothelial cells (VECs) markers CD31, CD34, kinase insert domain receptor (KDR), and von Willebrand factor (vWF) were analyzed with real-time quantitative RT-PCR and immunofluorescence techniques. Vasculogenic mimicry of hGSPCs was evaluated in a tumor stem cell xenograft model in vivo. Relationships between content of hGSPCs and expression levels of both VECs markers and proangiogenic factors in large number of clinical specimens were further investigated in glioma tissue microarray.
Results: In vitro, hGSPCs can transdifferentiate into VECs under hypoxia, they manifested typical "flagstone" pattern when cultivated in medium containing VEGF for a few days; when cultivated on Matrigel they were capable of forming capillary-like structures. Expression of VECs markers including CD31, CD34, KDR, and vWF were significantly up-regulated after transdifferentiation. Human leukocyte antigen (HLA) positively stained vessels were observed inside the xenograft tumors after intracerebral transplantation of hGSPCs in athymic nude mice, implied part of tumor cells with human origin were involved in formation of tumor vessels. In surgical specimens of human glioma, tumor vascular cells coexpressing the markers of early VECs (CD34) and markers of hGSPCs (ABCG2 and nestin) suggest that these vascular cells may stemmed from hGSPCs.
Conclusions: Our observations suggest the functional role of hGSPCs as endothelial progenitors, which have properties that give rise to VECs, and have the ability to form vascular endothelial tubes. However, unspecific markers (ABCG2, nestin) that stain for both endothelial as well as glioma stem cells, were found to be expressed in tumor vasculature of human specimen, and limit further interpretation of this finding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12015-010-9169-7 | DOI Listing |
Am J Physiol Heart Circ Physiol
January 2025
Cardiovascular Translational Research. Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain.
Aortic regurgitation (AR) is more prevalent in male, although cellular and molecular mechanisms underlying the sex differences in prevalence and pathophysiology are unknown. This study evaluates the impact of sex on aortic valve (AV) inflammation and remodeling as well as the cellular differences in valvular interstitial cells (VICs) and valvular endothelial cells (VECs) in patients with AR. A total of 144 patients (27.
View Article and Find Full Text PDFBMC Med
December 2024
Present Address: State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Beijing, Xi Cheng District, 100037, China.
Background: Functional mitral regurgitation (MR) is a common form of mitral valve dysfunction that often persists even after surgical intervention, requiring reoperation in some cases. To advance our understanding of the pathogenesis of functional MR, it is crucial to characterize the cellular composition of the mitral valve leaflet and identify molecular changes in each cell subtype within the mitral valves of MR patients. Therefore, we aimed to comprehensively examine the cellular and molecular components of mitral valves in patients with MR.
View Article and Find Full Text PDFBioact Mater
March 2025
Institute for Mechanobiology, Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA.
The technology of induced pluripotent stem cells (iPSCs) has enabled the conversion of somatic cells into primitive undifferentiated cells via reprogramming. This approach provides possibilities for cell replacement therapies and drug screening, but the potential risk of tumorigenesis hampers its further development and application. How to generate differentiated cells such as valvular endothelial cells (VECs) has remained a major challenge.
View Article and Find Full Text PDFActa Histochem
December 2024
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India. Electronic address:
Vascular endothelial cells (VECs) play a crucial role in the development and maintenance of vascular biology specific to the tissue types. Molecular signature-based labeling and imaging of VECs help researchers understand potential mechanisms linking VECs to disease pathology, serving as valuable biomarkers in clinical settings and trials. Labeling techniques involve selectively tagging or marking VECs for visualization.
View Article and Find Full Text PDFCells
March 2024
Unidad de Fisiología, Departamento de Biología de Sistemas, Facultad de Medicina, IRYCIS, Universidad de Alcalá, 28871 Alcalá de Henares, Spain.
Calcific Aortic Valve Disease (CAVD) is a significant concern for cardiovascular health and is closely associated with chronic kidney disease (CKD). Aortic valve endothelial cells (VECs) play a significant role in the onset and progression of CAVD. Previous research has suggested that uremic toxins, particularly indoxyl sulfate (IS), induce vascular calcification and endothelial dysfunction, but the effect of IS on valve endothelial cells (VECs) and its contribution to CAVD is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!