Galvanic reactions of Hg(2+), Rh(3+), and AuCl(4)(-) ions with Ag nanoparticles positioned near the surface and throughout the matrix of host poly(perfluorosulfonic) acid membrane have been studied.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0cc00825gDOI Listing

Publication Analysis

Top Keywords

galvanic reactions
8
reactions involving
4
involving silver
4
silver nanoparticles
4
nanoparticles embedded
4
embedded cation-exchange
4
cation-exchange membrane
4
membrane galvanic
4
reactions hg2+
4
hg2+ rh3+
4

Similar Publications

Electrochemical Migration of Zincophilic Metals for Stress Mitigation and Uniform Zinc Deposition in Aqueous Zinc-Ion Batteries.

Small

January 2025

Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China.

The propensity of zinc (Zn) to form irregular electrodeposits at liquid-solid interfaces emerges as a fundamental barrier to high-energy, rechargeable batteries that use zinc anodes. So far, tremendous efforts are devoted to tailoring interfaces, while atomic-scale reaction mechanisms and the related nanoscale strain at the electrochemical interface receive less attention. Here, the underlying atomic-scale reaction mechanisms and the associated nanoscale strain at the electrochemical alloy interface are investigate, using gold-zinc alloy protective layer as a model system.

View Article and Find Full Text PDF

Electrodialysis (ED) has already been applied to recover nickel in galvanizing processes, allowing nickel recovery and the production of a treated effluent with demineralized water quality. However, the growth in ED use is still limited by the production and commercialization of ion-selective membranes, currently limited to a few large companies. Therefore, this paper presents the development of homogeneous cationic and anionic membranes made from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) for ED use.

View Article and Find Full Text PDF

Electron transfer tuning for persulfate activation via the radical and non-radical pathways with biochar mediator.

J Hazard Mater

December 2024

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, Sichuan 610059, P.R. China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P.R. China. Electronic address:

Electron mediator-based in-situ chemical oxidation (ISCO) offers a novel strategy for groundwater remediation due to diverse reaction pathways. However, distinguishing and further tuning the reaction pathway remains challenging. Herein, biochar as an electron mediator targeted active peroxysulphate (PDS) via the radical or non-radical pathway.

View Article and Find Full Text PDF

Achieving precise and cost-effective etching in the field of silicon three-dimensional (3D) structure fabrication remains a significant challenge. Here, we present the successful fabrication of microscale anisotropic Si structures with an etching anisotropy of 0.73 using Cu-metal-assisted chemical etching (Cu-MACE) and propose a mechanism to elucidate the chemical behavior of Cu within the MACE solution.

View Article and Find Full Text PDF

Fabrication of Pb-Containing PtAu Nanoflowers via Galvanic Replacement Method for Electrocatalytical Oxidation of Methanol.

Molecules

November 2024

Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.

A Pb-containing PtAu nanoflower electrocatalyst was deposited on the cathode via galvanic replacement reaction in a double-cabin galvanic cell (DCGC) with a Cu plate as the anode, a multiwalled carbon nanotube (MWCNT) modified glassy carbon electrode (GCE) as the cathode, 0.1 M HClO aqueous solution as the anolyte, and Pb-containing Pt salt and Au salt mixed aqueous solution as the catholyte, respectively, and the electrocatalytic performance of the modified electrode toward methanol oxidation in the alkaline medium was investigated. Electrochemical studies reveal that the stripping of bulk Cu can induce underpotential deposition (UPD) of Pb on Pt during the galvanic replacement reaction, which affects the morphology and composition of Pb-containing PtAu nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!